Do you want to publish a course? Click here

$LambdaLambda$ and N$Xi$ interactions from Lattice QCD near the physical point

320   0   0.0 ( 0 )
 Added by Kenji Sasaki
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The $S$-wave $LambdaLambda$ and $N Xi$ interactions are studied on the basis of the (2+1)-flavor lattice QCD simulations close to the physical point ($m_pi simeq 146{rm{MeV}}$ and $m_K simeq 525{rm{MeV}}$). Lattice QCD potentials in four different spin-isospin channels are extracted by using the coupled-channel HAL QCD method and are parametrized by analytic functions to calculate the scattering phase shifts. The $Lambda Lambda$ interaction at low energies shows only a weak attraction, which does not provide a bound or resonant dihyperon. The $NXi$ interaction in the spin-singlet and isospin-singlet channel is most attractive and lead the $NXi$ system near unitarity. Relevance to the strangeness=$-2$ hypernuclei as well as to two-baryon correlations in proton-proton, proton-nucleus and nucleus-nucleus collisions is also discussed.



rate research

Read More

We calculate the low-lying spectrum of charmed baryons in lattice QCD on the $32^3times64$, $N_f=2+1$ PACS-CS gauge configurations at the almost physical pion mass of $sim 156$ MeV/c$^2$. By employing a set of interpolating operators with different Dirac structures and quark-field smearings for the variational analysis, we extract the ground and first few excited states of the spin-$1/2$ and spin-$3/2$, singly-, doubly-, and triply-charmed baryons. Additionally, we study the $Xi_c$-$Xi_c^prime$ mixing and the operator dependence of the excited states in a variational approach. We identify several states that lie close to the experimentally observed excited states of the $Sigma_c$, $Xi_c$ and $Omega_c$ baryons, including some of the $Xi_c$ states recently reported by LHCb. Our results for the doubly- and triply-charmed baryons are suggestive for future experiments.
The nucleon($N$)-Omega($Omega$) system in the S-wave and spin-2 channel ($^5$S$_2$) is studied from the (2+1)-flavor lattice QCD with nearly physical quark masses ($m_pi simeq 146$~MeV and $m_K simeq 525$~MeV). The time-dependent HAL QCD method is employed to convert the lattice QCD data of the two-baryon correlation function to the baryon-baryon potential and eventually to the scattering observables. The $NOmega$($^5$S$_2$) potential, obtained under the assumption that its couplings to the D-wave octet-baryon pairs are small, is found to be attractive in all distances and to produce a quasi-bound state near unitarity: In this channel, the scattering length, the effective range and the binding energy from QCD alone read $a_0= 5.30(0.44)(^{+0.16}_{-0.01})$~fm, $r_{rm eff} = 1.26(0.01)(^{+0.02}_{-0.01})$~fm, $B = 1.54(0.30)(^{+0.04}_{-0.10})$~MeV, respectively. Including the extra Coulomb attraction, the binding energy of $pOmega^-$($^5$S$_2$) becomes $B_{pOmega^-} = 2.46(0.34)(^{+0.04}_{-0.11})$~MeV. Such a spin-2 $pOmega^-$ state could be searched through two-particle correlations in $p$-$p$, $p$-nucleus and nucleus-nucleus collisions.
Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forging this connection for searches involving low-energy hadronic or nuclear environments requires the use of a non-perturbative theoretical tool, lattice QCD. We present two recent lattice QCD calculations by the CalLat collaboration relevant for new physics searches: the nucleon axial coupling, $g_A$, whose precise value as predicted by the SM could help point to new physics contributions to the so-called neutron lifetime puzzle, and hadronic matrix elements of short-ranged operators relevant for neutrinoless double beta decay searches.
Nuclear forces and hyperon forces are studied by lattice QCD. Simulations are performed with (almost) physical quark masses, $m_pi simeq 146$ MeV and $m_K simeq 525$ MeV, where $N_f=2+1$ nonperturbatively ${cal O}(a)$-improved Wilson quark action with stout smearing and Iwasaki gauge action are employed on the lattice of $(96a)^4 simeq (8.1mbox{fm})^4$ with $a^{-1} simeq 2.3$ GeV. In this report, we give the overview of the theoretical framework and present the numerical results for two-nucleon forces ($S=0$) and two-$Xi$ forces ($S=-4$). Central forces are studied in $^1S_0$ channel, and central and tensor forces are obtained in $^3S_1$-$^3D_1$ coupled channel analysis.
We report the recent progress on the determination of three-nucleon forces (3NF) in lattice QCD. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to define the potential in quantum field theory, and extract two-nucleon forces (2NF) and 3NF on equal footing. The enormous computational cost for calculating multi-baryon correlators on the lattice is drastically reduced by developing a novel contraction algorithm (the unified contraction algorithm). Quantum numbers of the three-nucleon (3N) system are chosen to be (I, J^P)=(1/2,1/2^+) (the triton channel), and we extract 3NF in which three nucleons are aligned linearly with an equal spacing. Lattice QCD simulations are performed using N_f=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m(pi)= 1.13 GeV. Repulsive 3NF is found at short distance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا