Instantons and Hilbert Functions


Abstract in English

We study superpotentials from worldsheet instantons in heterotic Calabi-Yau compactifications for vector bundles constructed from line bundle sums, monads and extensions. Within a certain class of manifolds and for certain second homology classes, we derive simple necessary conditions for a non-vanishing instanton superpotential. These show that non-vanishing instanton superpotentials are rare and require a specific pattern for the bundle construction. For the class of monad and extension bundles with this pattern, we derive a sufficient criterion for non-vanishing instanton superpotentials based on an affine Hilbert function. This criterion shows that a non-zero instanton superpotential is common within this class. The criterion can be checked using commutative algebra methods only and depends on the topological data defining the Calabi-Yau X and the vector bundle V.

Download