Do you want to publish a course? Click here

Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation

215   0   0.0 ( 0 )
 Added by Kai Arulkumaran
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep reinforcement learning has the potential to train robots to perform complex tasks in the real world without requiring accurate models of the robot or its environment. A practical approach is to train agents in simulation, and then transfer them to the real world. One popular method for achieving transferability is to use domain randomisation, which involves randomly perturbing various aspects of a simulated environment in order to make trained agents robust to the reality gap. However, less work has gone into understanding such agents - which are deployed in the real world - beyond task performance. In this work we examine such agents, through qualitative and quantitative comparisons between agents trained with and without visual domain randomisation. We train agents for Fetch and Jaco robots on a visuomotor control task and evaluate how well they generalise using different testing conditions. Finally, we investigate the internals of the trained agents by using a suite of interpretability techniques. Our results show that the primary outcome of domain randomisation is more robust, entangled representations, accompanied with larger weights with greater spatial structure; moreover, the types of changes are heavily influenced by the task setup and presence of additional proprioceptive inputs. Additionally, we demonstrate that our domain randomised agents require higher sample complexity, can overfit and more heavily rely on recurrent processing. Furthermore, even with an improved saliency method introduced in this work, we show that qualitative studies may not always correspond with quantitative measures, necessitating the combination of inspection tools in order to provide sufficient insights into the behaviour of trained agents.



rate research

Read More

Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks. Agents with common memory architectures struggle to recall and integrate across multiple timesteps of a past event, or even to recall the details of a single timestep that is followed by distractor tasks. To address these limitations, we propose a Hierarchical Transformer Memory (HTM), which helps agents to remember the past in detail. HTM stores memories by dividing the past into chunks, and recalls by first performing high-level attention over coarse summaries of the chunks, and then performing detailed attention within only the most relevant chunks. An agent with HTM can therefore mentally time-travel -- remember past events in detail without attending to all intervening events. We show that agents with HTM substantially outperform agents with other memory architectures at tasks requiring long-term recall, retention, or reasoning over memory. These include recalling where an object is hidden in a 3D environment, rapidly learning to navigate efficiently in a new neighborhood, and rapidly learning and retaining new object names. Agents with HTM can extrapolate to task sequences an order of magnitude longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes. HTM improves agent sample efficiency, generalization, and generality (by solving tasks that previously required specialized architectures). Our work is a step towards agents that can learn, interact, and adapt in complex and temporally-extended environments.
Reinforcement learning competitions have formed the basis for standard research benchmarks, galvanized advances in the state-of-the-art, and shaped the direction of the field. Despite this, a majority of challenges suffer from the same fundamental problems: participant solutions to the posed challenge are usually domain-specific, biased to maximally exploit compute resources, and not guaranteed to be reproducible. In this paper, we present a new framework of competition design that promotes the development of algorithms that overcome these barriers. We propose four central mechanisms for achieving this end: submission retraining, domain randomization, desemantization through domain obfuscation, and the limitation of competition compute and environment-sample budget. To demonstrate the efficacy of this design, we proposed, organized, and ran the MineRL 2020 Competition on Sample-Efficient Reinforcement Learning. In this work, we describe the organizational outcomes of the competition and show that the resulting participant submissions are reproducible, non-specific to the competition environment, and sample/resource efficient, despite the difficult competition task.
Memory-based meta-learning is a powerful technique to build agents that adapt fast to any task within a target distribution. A previous theoretical study has argued that this remarkable performance is because the meta-training protocol incentivises agents to behave Bayes-optimally. We empirically investigate this claim on a number of prediction and bandit tasks. Inspired by ideas from theoretical computer science, we show that meta-learned and Bayes-optimal agents not only behave alike, but they even share a similar computational structure, in the sense that one agent system can approximately simulate the other. Furthermore, we show that Bayes-optimal agents are fixed points of the meta-learning dynamics. Our results suggest that memory-based meta-learning might serve as a general technique for numerically approximating Bayes-optimal agents - that is, even for task distributions for which we currently dont possess tractable models.
In recent years, Multifactorial Optimization (MFO) has gained a notable momentum in the research community. MFO is known for its inherent capability to efficiently address multiple optimization tasks at the same time, while transferring information among such tasks to improve their convergence speed. On the other hand, the quantum leap made by Deep Q Learning (DQL) in the Machine Learning field has allowed facing Reinforcement Learning (RL) problems of unprecedented complexity. Unfortunately, complex DQL models usually find it difficult to converge to optimal policies due to the lack of exploration or sparse rewards. In order to overcome these drawbacks, pre-trained models are widely harnessed via Transfer Learning, extrapolating knowledge acquired in a source task to the target task. Besides, meta-heuristic optimization has been shown to reduce the lack of exploration of DQL models. This work proposes a MFO framework capable of simultaneously evolving several DQL models towards solving interrelated RL tasks. Specifically, our proposed framework blends together the benefits of meta-heuristic optimization, Transfer Learning and DQL to automate the process of knowledge transfer and policy learning of distributed RL agents. A thorough experimentation is presented and discussed so as to assess the performance of the framework, its comparison to the traditional methodology for Transfer Learning in terms of convergence, speed and policy quality , and the intertask relationships found and exploited over the search process.
Reproducibility in reinforcement learning is challenging: uncontrolled stochasticity from many sources, such as the learning algorithm, the learned policy, and the environment itself have led researchers to report the performance of learned agents using aggregate metrics of performance over multiple random seeds for a single environment. Unfortunately, there are still pernicious sources of variability in reinforcement learning agents that make reporting common summary statistics an unsound metric for performance. Our experiments demonstrate the variability of common agents used in the popular OpenAI Baselines repository. We make the case for reporting post-training agent performance as a distribution, rather than a point estimate.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا