Do you want to publish a course? Click here

Integer programming techniques for minor-embedding in quantum annealers

84   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A major limitation of current generations of quantum annealers is the sparse connectivity of manufactured qubits in the hardware graph. This technological limitation generated considerable interest, motivating efforts to design efficient and adroit minor-embedding procedures that bypass sparsity constraints. In this paper, starting from a previous equational formulation by Dridi et al. (arXiv:1810.01440), we propose integer programming (IP) techniques for solving the minor-embedding problem. The first approach involves a direct translation from the previous equational formulation to IP, while the second decomposes the problem into an assignment master problem and fiber condition checking subproblems. The proposed methods are able to detect instance infeasibility and provide bounds on solution quality, capabilities not offered by currently employed heuristic methods. We demonstrate the efficacy of our methods with an extensive computational assessment involving three different families of random graphs of varying sizes and densities. The direct translation as a monolithic IP model can be solved with existing commercial solvers yielding valid minor-embeddings, however, is outperformed overall by the decomposition approach. Our results demonstrate the promise of our methods for the studied benchmarks, highlighting the advantages of using IP technology for minor-embedding problems.



rate research

Read More

We consider the problem of mapping a logical quantum circuit onto a given hardware with limited two-qubit connectivity. We model this problem as an integer linear program, using a network flow formulation with binary variables that includes the initial allocation of qubits and their routing. We consider several cost functions: an approximation of the fidelity of the circuit, its total depth, and a measure of cross-talk, all of which can be incorporated in the model. Numerical experiments on synthetic data and different hardware topologies indicate that the error rate and depth can be optimized simultaneously without significant loss. We test our algorithm on a large number of quantum volume circuits, optimizing for error rate and depth; our algorithm significantly reduces the number of CNOTs compared to Qiskits default transpiler SABRE, and produces circuits that, when executed on hardware, exhibit higher fidelity.
Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a 2-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with planted (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems, but also when minor embedding is used to extend the connectivity of physical devices.
A significant challenge in quantum annealing is to map a real-world problem onto a hardware graph of limited connectivity. If the maximum degree of the problem graph exceeds the maximum degree of the hardware graph, one employs minor embedding in which each logical qubit is mapped to a tree of physical qubits. Pairwise interactions between physical qubits in the tree are set to be ferromagnetic with some coupling strength $F<0$. Here we address the question of what value $F$ should take in order to maximise the probability that the annealer finds the correct ground-state of an Ising problem. The sum of $|F|$ for each logical qubit is defined as minor embedding energy. We confirm experimentally that the ground-state probability is maximised when the minor embedding energy is minimised, subject to the constraint that no domain walls appear in every tree of physical qubits associated with each embedded logical qubit. We further develop an analytical lower bound on $|F|$ which satisfies this constraint and show that it is a tighter bound than that previously derived by Choi (Quantum Inf. Proc. 7 193 (2008)).
While quantum computing proposes promising solutions to computational problems not accessible with classical approaches, due to current hardware constraints, most quantum algorithms are not yet capable of computing systems of practical relevance, and classical counterparts outperform them. To practically benefit from quantum architecture, one has to identify problems and algorithms with favorable scaling and improve on corresponding limitations depending on available hardware. For this reason, we developed an algorithm that solves integer linear programming problems, a classically NP-hard problem, on a quantum annealer, and investigated problem and hardware-specific limitations. This work presents the formalism of how to map ILP problems to the annealing architectures, how to systematically improve computations utilizing optimized anneal schedules, and models the anneal process through a simulation. It illustrates the effects of decoherence and many body localization for the minimum dominating set problem, and compares annealing results against numerical simulations of the quantum architecture. We find that the algorithm outperforms random guessing but is limited to small problems and that annealing schedules can be adjusted to reduce the effects of decoherence. Simulations qualitatively reproduce algorithmic improvements of the modified annealing schedule, suggesting the improvements have origins from quantum effects.
In this paper, we develop a simple and fast online algorithm for solving a class of binary integer linear programs (LPs) arisen in general resource allocation problem. The algorithm requires only one single pass through the input data and is free of doing any matrix inversion. It can be viewed as both an approximate algorithm for solving binary integer LPs and a fast algorithm for solving online LP problems. The algorithm is inspired by an equivalent form of the dual problem of the relaxed LP and it essentially performs (one-pass) projected stochastic subgradient descent in the dual space. We analyze the algorithm in two different models, stochastic input and random permutation, with minimal technical assumptions on the input data. The algorithm achieves $Oleft(m sqrt{n}right)$ expected regret under the stochastic input model and $Oleft((m+log n)sqrt{n}right)$ expected regret under the random permutation model, and it achieves $O(m sqrt{n})$ expected constraint violation under both models, where $n$ is the number of decision variables and $m$ is the number of constraints. The algorithm enjoys the same performance guarantee when generalized to a multi-dimensional LP setting which covers a wider range of applications. In addition, we employ the notion of permutational Rademacher complexity and derive regret bounds for two earlier online LP algorithms for comparison. Both algorithms improve the regret bound with a factor of $sqrt{m}$ by paying more computational cost. Furthermore, we demonstrate how to convert the possibly infeasible solution to a feasible one through a randomized procedure. Numerical experiments illustrate the general applicability and effectiveness of the algorithms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا