Do you want to publish a course? Click here

Suzaku and Fermi view of the supernova remnant 3C 396

69   0   0.0 ( 0 )
 Added by Aytap Sezer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

3C 396 is a composite supernova remnant (SNR), consisting of a central pulsar wind nebula (PWN) and a bright shell in the west, which is known to be interacting with molecular clouds (MCs). We present a study of X-ray emission from the shell and the PWN of the SNR 3C 396 using archival Suzaku data. The spectrum of the SNR shell is clearly thermal, without a signature of a non-thermal component. The abundances of Al and Ca from the shell are slightly enhanced, which indicates the presence of metal-enriched supernova ejecta. The PWN spectra are well described by a power-law model with a photon index of $sim$1.97 and a thermal component with an electron temperature of $sim$0.93 keV. The analysis of about 11-years of Fermi data revealed an 18 sigma-detection of gamma-ray emission from the location overlapping with the position of 3C 396 / 4FGL J1903.8+0531. The spectrum of 3C 396 / 4FGL J1903.8+0531 is best-fitted with a log-parabola function with parameters of $alpha$ = 2.66 and $beta$ = 0.16 in the energy range of 0.2$-$300 GeV. The luminosity of 3C 396 / 4FGL J1903.8+0531 was found to be $>$10$^{35}$ erg s$^{-1}$ at 6.2 kpc, which rules out the inverse Compton emission model. Possible scenarios of gamma-ray emission are hadronic emission and bremsstrahlung processes, due to the fact that the SNR is expanding into dense MCs in the western and northern regions of the SNR.



rate research

Read More

We have observed the supernova remnant 3C~396 in the microwave region using the Parkes 64-m telescope. Observations have been made at 8.4 GHz, 13.5 GHz, and 18.6 GHz and in polarisation at 21.5 GHz. We have used data from several other observatories, including previously unpublished observations performed by the Green Bank Telescope at 31.2 GHz, to investigate the nature of the microwave emission of 3C 396. Results show a spectral energy distribution dominated by a single component power law emission with $alpha=(-0.364 pm 0.017)$. Data do not favour the presence of anomalous microwave emission coming from the source. Polarised emission at 21.5 GHz is consistent with synchrotron-dominated emission. We present microwave maps and correlate them with infrared (IR) maps in order to characterise the interplay between thermal dust and microwave emission. IR vs. microwave TT plots reveal poor correlation between mid-infrared and microwave emission from the core of the source. On the other hand, a correlation is detected in the tail emission of the outer shell of 3C 396, which could be ascribed to Galactic contamination.
309 - R. M. Sambruna 2011
We present a long Suzaku observation of 3C 382. A Swift BAT spectrum from the 58-month survey is also analyzed, together with an archival XMM-Newton EPIC exposure. Our main result is the finding with Suzaku of a broad FeK line with a relativistic profile consistent with emission from an accretion disk at tens of gravitational radii from the central black hole. The XIS data indicate emission from highly ionized iron and allow us to set tight, albeit model-dependent, constraints on the inner and outer radii of the disk reflecting region, r_in~10r_g and r_out~20r_g, respectively, and on the disk inclination, i~30deg. Two ionized reflection components are possibly observed, with similar contributions of ~10% to the total continuum. A highly ionized one, with log_xi~3, which successfully models the relativistic line and a mildly ionized one, with log_xi~1.5, which models the narrow Fe K line and high energy hump. When both these components are included, there is no further requirement for an additional black body soft excess below 2keV. The Suzaku data confirm the presence of a warm absorber previously known from grating studies. After accounting for all the spectral features, the intrinsic photon index of the X-ray continuum is ~1.8 with a cutoff energy at ~200keV, consistent with Comptonization models and excluding jet-related emission up to these energies. Comparison of the X-ray properties of 3C 382 and other BLRGs to Seyferts confirms the idea that the distinction between radio-loud and radio-quiet AGN at X-rays is blurred.
130 - Yang Su 2010
We have investigated the molecular environment of the semicircular composite supernova remnant (SNR) 3C396 and performed a Chandra spatially resolved thermal X-ray spectroscopic study of this young SNR. With our CO millimeter observations, we find that the molecular clouds (MCs) at V(LSR)~84km/s can better explain the multiwavelength properties of the remnant than the V(LSR)=67-72km/s MCs that are suggested by Lee et al. (2009). At around 84km/s, the western boundary of the SNR is perfectly confined by the western molecular wall. The CO emission fades out from west to east, indicating that the eastern region is of low gas density. In particular, an intruding finger/pillar-like MC, which may be shocked at the tip, can well explain the X-ray and radio enhancement in the southwest and some infrared filaments there. The SNR-MC interaction is also favored by the relatively elevated 12CO J=2-1/J=1-0 line ratios in the southwestern pillar tip and the molecular patch on the northwestern boundary. The redshifted 12CO (J=1-0 and J=2-1) wings (86-90km/s) of an eastern 81km/s molecular patch may be the kinematic evidence for shock-MC interaction. We suggest that the 69km/s MCs are in the foreground based on HI self-absorption while the 84km/s MCs at a distance of 6.2 kpc (the tangent point) are in physical contact with SNR 3C396. The X-ray spectral analysis suggests an SNR age of ~3kyr. The metal enrichment of the X-ray emitting gas in the north and south implies a 13-15Msun B1-B2 progenitor star.
463 - H. Zhu , W. W. Tian , D. Wu 2015
We analyze the Suzaku XIS data of the central region of supernova remnant G332.5-5.6. The X-ray data are well described by a single non-equilibrium ionization thermal model, {tt vnei}, with an absorbing hydrogen column density of 1.4$^{+0.4}_{-0.1}$ $times$ 10$^{21}$ cm$^{-2}$. The plasma is characterized by an electron temperature of 0.49$^{+0.08}_{-0.06}$ keV with subsolar abundances for O (0.58$^{+0.06}_{-0.05}$ solar value) and Fe (0.72$^{+0.06}_{-0.05}$ solar value) and slightly overabundance for Mg (1.23$^{+0.14}_{-0.14}$ solar value). It seems that the central X-ray emission originates from projection effect or evaporation of residual clouds inside G332.5-5.6. We estimate a distance of 3.0 $pm$ 0.8 kpc for G332.5-5.6 based on the extinction-distance relation. G332.5-5.6 has an age of 7 - 9 kyr.
We present the results of near-infrared [Fe II] and H2 line imaging and spectroscopic observations of the supernova remnant 3C 396 using the Palomar 5 m Hale telescope. We detect long, filamentary [Fe II] emission delineating the inner edge of the radio emission in the western boundary of the remnant in imaging observations, together with a bright [Fe II] emission clump close to the remnant center. There appears to be faint, diffuse [Fe II] emission between the central clump and the western filamentary emission. The spectroscopic observations determine the expansion velocity of the central clump to be ~56 km/s. This is far smaller than the expansion velocity of 3C 396 obtained from X-ray observations, implying the inhomogeneity of the ambient medium. The electron number density of the [Fe II] emission gas is < 2,000 cm-3. The H2 line emission, on the other hand, lies slightly outside the filamentary [Fe II] emission in the western boundary, and forms a rather straight filament. We suggest that the [Fe II] emission represents dense clumps in the wind material from the red supergiant phase of a Type IIL/b progenitor of 3C 396 which have been swept up by the supernova remnant shocks. The H2 emission may represent either the boundary of a wind bubble produced during the main-sequence phase of the progenitor or molecular clumps left over inside the bubble. We propose that the near-infrared [Fe II] and H2 emission observed in several supernova remnants of Type IIL/b SNe likely has the same origin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا