Do you want to publish a course? Click here

Causality matters in medical imaging

52   0   0.0 ( 0 )
 Added by Daniel C. Castro
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This article discusses how the language of causality can shed new light on the major challenges in machine learning for medical imaging: 1) data scarcity, which is the limited availability of high-quality annotations, and 2) data mismatch, whereby a trained algorithm may fail to generalize in clinical practice. Looking at these challenges through the lens of causality allows decisions about data collection, annotation procedures, and learning strategies to be made (and scrutinized) more transparently. We discuss how causal relationships between images and annotations can not only have profound effects on the performance of predictive models, but may even dictate which learning strategies should be considered in the first place. For example, we conclude that semi-supervision may be unsuitable for image segmentation---one of the possibly surprising insights from our causal analysis, which is illustrated with representative real-world examples of computer-aided diagnosis (skin lesion classification in dermatology) and radiotherapy (automated contouring of tumours). We highlight that being aware of and accounting for the causal relationships in medical imaging data is important for the safe development of machine learning and essential for regulation and responsible reporting. To facilitate this we provide step-by-step recommendations for future studies.



rate research

Read More

Image classification is central to the big data revolution in medicine. Improved information processing methods for diagnosis and classification of digital medical images have shown to be successful via deep learning approaches. As this field is explored, there are limitations to the performance of traditional supervised classifiers. This paper outlines an approach that is different from the current medical image classification tasks that view the issue as multi-class classification. We performed a hierarchical classification using our Hierarchical Medical Image classification (HMIC) approach. HMIC uses stacks of deep learning models to give particular comprehension at each level of the clinical picture hierarchy. For testing our performance, we use biopsy of the small bowel images that contain three categories in the parent level (Celiac Disease, Environmental Enteropathy, and histologically normal controls). For the child level, Celiac Disease Severity is classified into 4 classes (I, IIIa, IIIb, and IIIC).
Supervised learning method requires a large volume of annotated datasets. Collecting such datasets is time-consuming and expensive. Until now, very few annotated COVID-19 imaging datasets are available. Although self-supervised learning enables us to bootstrap the training by exploiting unlabeled data, the generic self-supervised methods for natural images do not sufficiently incorporate the context. For medical images, a desirable method should be sensitive enough to detect deviation from normal-appearing tissue of each anatomical region; here, anatomy is the context. We introduce a novel approach with two levels of self-supervised representation learning objectives: one on the regional anatomical level and another on the patient-level. We use graph neural networks to incorporate the relationship between different anatomical regions. The structure of the graph is informed by anatomical correspondences between each patient and an anatomical atlas. In addition, the graph representation has the advantage of handling any arbitrarily sized image in full resolution. Experiments on large-scale Computer Tomography (CT) datasets of lung images show that our approach compares favorably to baseline methods that do not account for the context. We use the learnt embedding to quantify the clinical progression of COVID-19 and show that our method generalizes well to COVID-19 patients from different hospitals. Qualitative results suggest that our model can identify clinically relevant regions in the images.
Advances in computing power, deep learning architectures, and expert labelled datasets have spurred the development of medical imaging artificial intelligence systems that rival clinical experts in a variety of scenarios. The National Institutes of Health in 2018 identified key focus areas for the future of artificial intelligence in medical imaging, creating a foundational roadmap for research in image acquisition, algorithms, data standardization, and translatable clinical decision support systems. Among the key issues raised in the report: data availability, need for novel computing architectures and explainable AI algorithms, are still relevant despite the tremendous progress made over the past few years alone. Furthermore, translational goals of data sharing, validation of performance for regulatory approval, generalizability and mitigation of unintended bias must be accounted for early in the development process. In this perspective paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations in developing high-dimensional, multi-modality, machine learning systems for clinical decision support.
Deep reinforcement learning (DRL) augments the reinforcement learning framework, which learns a sequence of actions that maximizes the expected reward, with the representative power of deep neural networks. Recent works have demonstrated the great potential of DRL in medicine and healthcare. This paper presents a literature review of DRL in medical imaging. We start with a comprehensive tutorial of DRL, including the latest model-free and model-based algorithms. We then cover existing DRL applications for medical imaging, which are roughly divided into three main categories: (I) parametric medical image analysis tasks including landmark detection, object/lesion detection, registration, and view plane localization; (ii) solving optimization tasks including hyperparameter tuning, selecting augmentation strategies, and neural architecture search; and (iii) miscellaneous applications including surgical gesture segmentation, personalized mobile health intervention, and computational model personalization. The paper concludes with discussions of future perspectives.
Medical image processing is one of the most important topics in the field of the Internet of Medical Things (IoMT). Recently, deep learning methods have carried out state-of-the-art performances on medical image tasks. However, conventional deep learning have two main drawbacks: 1) insufficient training data and 2) the domain mismatch between the training data and the testing data. In this paper, we propose a distant domain transfer learning (DDTL) method for medical image classification. Moreover, we apply our methods to a recent issue (Coronavirus diagnose). Several current studies indicate that lung Computed Tomography (CT) images can be used for a fast and accurate COVID-19 diagnosis. However, the well-labeled training data cannot be easily accessed due to the novelty of the disease and a number of privacy policies. Moreover, the proposed method has two components: Reduced-size Unet Segmentation model and Distant Feature Fusion (DFF) classification model. It is related to a not well-investigated but important transfer learning problem, termed Distant Domain Transfer Learning (DDTL). DDTL aims to make efficient transfers even when the domains or the tasks are entirely different. In this study, we develop a DDTL model for COVID-19 diagnose using unlabeled Office-31, Catech-256, and chest X-ray image data sets as the source data, and a small set of COVID-19 lung CT as the target data. The main contributions of this study: 1) the proposed method benefits from unlabeled data collected from distant domains which can be easily accessed, 2) it can effectively handle the distribution shift between the training data and the testing data, 3) it has achieved 96% classification accuracy, which is 13% higher classification accuracy than non-transfer algorithms, and 8% higher than existing transfer and distant transfer algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا