Do you want to publish a course? Click here

TDCOSMO. I. An exploration of systematic uncertainties in the inference of $H_0$ from time-delay cosmography

150   0   0.0 ( 0 )
 Added by Martin Millon
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, $H_0$. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on $H_0$ from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in $H_0$ values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the bulge-halo conspiracy, $H_0$ is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields $74.0^{+1.7}_{-1.8}$ $km.s^{-1}.Mpc^{-1}$, while the power-law model yields $H_0=74.2^{+1.6}_{-1.6}$ $km.s^{-1}.Mpc^{-1}$. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.



rate research

Read More

The H0LiCOW collaboration inferred via gravitational lensing time delays a Hubble constant $H_0=73.3^{+1.7}_{-1.8}$ km s$^{-1}{rm Mpc}^{-1}$, describing deflector mass density profiles by either a power-law or stars plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in $H_0$. We quantify any potential effect of the MST with flexible mass models that are maximally degenerate with H0. Our calculation is based on a new hierarchical approach in which the MST is only constrained by stellar kinematics. The approach is validated on hydrodynamically simulated lenses. We apply the method to the TDCOSMO sample of 7 lenses (6 from H0LiCOW) and measure $H_0=74.5^{+5.6}_{-6.1}$ km s$^{-1}{rm Mpc}^{-1}$. In order to further constrain the deflector mass profiles, we then add imaging and spectroscopy for 33 strong gravitational lenses from the SLACS sample. For 9 of the SLAC lenses we use resolved kinematics to constrain the stellar anisotropy. From the joint analysis of the TDCOSMO+SLACS sample, we measure $H_0=67.4^{+4.1}_{-3.2}$ km s$^{-1}{rm Mpc}^{-1}$, assuming that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. While our new analysis does not statistically invalidate the mass profile assumptions by H0LiCOW, and thus their $H_0$ measurement relying on those, it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on $H_0$ derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data, chiefly spatially resolved kinematics of lens galaxies.
Time-delay cosmography with gravitationally lensed quasars plays an important role in anchoring the absolute distance scale and hence measuring the Hubble constant, $H_{0}$, independent of traditional distance ladder methodology. A current potential limitation of time delay distance measurements is the mass-sheet transformation (MST) which leaves the lensed imaging unchanged but changes the distance measurements and the derived value of $H_0$. In this work we show that the standard method of addressing the MST in time delay cosmography, through a combination of high-resolution imaging and the measurement of the stellar velocity dispersion of the lensing galaxy, depends on the assumption that the ratio, $D_{rm s}/D_{rm ds}$, of angular diameter distances to the background quasar and between the lensing galaxy and the quasar can be constrained. This is typically achieved through the assumption of a particular cosmological model. Previous work (TDCOSMO IV) addressed the mass-sheet degeneracy and derived $H_{0}$ under the assumption of $Lambda$CDM model. In this paper we show that the mass sheet degeneracy can be broken without relying on a specific cosmological model by combining lensing with relative distance indicators such as supernovae type Ia and baryon acoustic oscillations, which constrain the shape of the expansion history and hence $D_{rm s}/D_{rm ds}$. With this approach, we demonstrate that the mass-sheet degeneracy can be constrained in a cosmological-model-independent way, and hence model-independent distance measurements in time-delay cosmography under mass-sheet transformations can be obtained.
92 - Tommaso Treu 2016
Gravitational time delays, observed in strong lens systems where the variable background source is multiply-imaged by a massive galaxy in the foreground, provide direct measurements of cosmological distance that are very complementary to other cosmographic probes. The success of the technique depends on the availability and size of a suitable sample of lensed quasars or supernovae, precise measurements of the time delays, accurate modeling of the gravitational potential of the main deflector, and our ability to characterize the distribution of mass along the line of sight to the source. We review the progress made during the last 15 years, during which the first competitive cosmological inferences with time delays were made, and look ahead to the potential of significantly larger lens samples in the near future.
Strongly lensed explosive transients such as supernovae, gamma-ray bursts, fast radio bursts, and gravitational waves are very promising tools to determine the Hubble constant ($H_0$) in the near future in addition to strongly lensed quasars. In this work, we show that the transient nature of the point source provides an advantage over quasars: the lensed host galaxy can be observed before or after the transients appearance. Therefore, the lens model can be derived from images free of contamination from bright point sources. We quantify this advantage by comparing the precision of a lens model obtained from the same lenses with and without point sources. Based on Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations with the same sets of lensing parameters, we simulate realistic mock datasets of 48 quasar lensing systems (i.e., adding AGN in the galaxy center) and 48 galaxy-galaxy lensing systems (assuming the transient source is not visible but the time delay and image positions have been or will be measured). We then model the images and compare the inferences of the lens model parameters and $H_0$. We find that the precision of the lens models (in terms of the deflector mass slope) is better by a factor of 4.1 for the sample without lensed point sources, resulting in an increase of $H_0$ precision by a factor of 2.9. The opportunity to observe the lens systems without the transient point sources provides an additional advantage for time-delay cosmography over lensed quasars. It facilitates the determination of higher signal-to-noise stellar kinematics of the main deflector, and thus its mass density profile, which in turn plays a key role in breaking the mass-sheet degeneracy and constraining $H_0$.
417 - S. Rathna Kumar , C. S. Stalin , 2014
In this work, we present a homogeneous curve-shifting analysis using the difference-smoothing technique of the publicly available light curves of 24 gravitationally lensed quasars, for which time delays have been reported in the literature. The uncertainty of each measured time delay was estimated using realistic simulated light curves. The recipe for generating such simulated light curves with known time delays in a plausible range around the measured time delay is introduced here. We identified 14 gravitationally lensed quasars that have light curves of sufficiently good quality to enable the measurement of at least one time delay between the images, adjacent to each other in terms of arrival-time order, to a precision of better than 20% (including systematic errors). We modeled the mass distribution of ten of those systems that have known lens redshifts, accurate astrometric data, and sufficiently simple mass distribution, using the publicly available PixeLens code to infer a value of $H_0$ of 68.1 $pm$ 5.9 km s$^{-1}$ Mpc$^{-1}$ (1$sigma$ uncertainty, 8.7% precision) for a spatially flat universe having $Omega_m$ = 0.3 and $Omega_Lambda$ = 0.7. We note here that the lens modeling approach followed in this work is a relatively simple one and does not account for subtle systematics such as those resulting from line-of-sight effects and hence our $H_0$ estimate should be considered as indicative.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا