The Unique Polyakov Blocks


Abstract in English

In this work we present a closed form expression for Polyakov blocks in Mellin space for arbitrary spin and scaling dimensions. We provide a prescription to fix the contact term ambiguity uniquely by reducing the problem to that of fixing the contact term ambiguity at the level of cyclic exchange amplitudes -- defining cyclic Polyakov blocks -- in terms of which any fully crossing symmetric correlator can be decomposed. We also give another, equivalent, prescription which does not rely on a decomposition into cyclic amplitudes and we underline the relation between cyclic amplitudes and dispersion relations in Mellin space. We extract the OPE data of double-twist operators in the direct channel expansion of the cyclic Polyakov blocks using and extending the analysis of cite{Sleight:2018epi,Sleight:2018ryu} to include contributions that are non-analytic in spin. The relation between cyclic Polyakov blocks and analytic Bootstrap functionals is underlined.

Download