No Arabic abstract
Consider random $d$-regular graphs, i.e., random graphs such that there are exactly $d$ edges from each vertex for some $dge 3$. We study both the configuration model version of this graph, which has occasional multi-edges and self-loops, as well as the simple version of it, which is a $d$-regular graph chosen uniformly at random from the collection of all $d$-regular graphs. In this paper, we discuss mixing times of Glauber dynamics for the Ising model with an external magnetic field on a random $d$-regular graph, both in the quenched as well as the annealed settings. Let $beta$ be the inverse temperature, $beta_c$ be the critical temperature and $B$ be the external magnetic field. Concerning the annealed measure, we show that for $beta > beta_c$ there exists $hat{B}_c(beta)in (0,infty)$ such that the model is metastable (i.e., the mixing time is exponential in the graph size $n$) when $beta> beta_c$ and $0 leq B < hat{B}_c(beta)$, whereas it exhibits the cut-off phenomenon at $c_star n log n$ with a window of order $n$ when $beta < beta_c$ or $beta > beta_c$ and $B>hat{B}_c(beta)$. Interestingly, $hat{B}_c(beta)$ coincides with the critical external field of the Ising model on the $d$-ary tree (namely, above which the model has a unique Gibbs measure). Concerning the quenched measure, we show that there exists $B_c(beta)$ with $B_c(beta) leq hat{B}_c(beta)$ such that for $beta> beta_c$, the mixing time is at least exponential along some subsequence $(n_k)_{kgeq 1}$ when $0 leq B < B_c(beta)$, whereas it is less than or equal to $Cnlog n$ when $B>hat{B}_c(beta)$. The quenched results also hold for the model conditioned on simplicity, for the annealed results this is unclear.
We study the Glauber dynamics for the Ising model on the complete graph, also known as the Curie-Weiss Model. For beta < 1, we prove that the dynamics exhibits a cut-off: the distance to stationarity drops from near 1 to near 0 in a window of order n centered at [2(1-beta)]^{-1} n log n. For beta = 1, we prove that the mixing time is of order n^{3/2}. For beta > 1, we study metastability. In particular, we show that the Glauber dynamics restricted to states of non-negative magnetization has mixing time O(n log n).
The Ising antiferromagnet is an important statistical physics model with close connections to the {sc Max Cut} problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry breaking phase transition predicted by physicists. Additionally, we rigorously establish upper bounds on the {sc Max Cut} of random regular graphs predicted by Zdeborova and Boettcher [Journal of Statistical Mechanics 2010]. As an application we prove that the information-theoretic threshold of the disassortative stochastic block model on random regular graphs coincides with the Kesten-Stigum bound.
We consider the contact process on the model of hyperbolic random graph, in the regime when the degree distribution obeys a power law with exponent $chi in(1,2)$ (so that the degree distribution has finite mean and infinite second moment). We show that the probability of non-extinction as the rate of infection goes to zero decays as a power law with an exponent that only depends on $chi$ and which is the same as in the configuration model, suggesting some universality of this critical exponent. We also consider fini
In a recent paper [15], Giardin{`a}, Giberti, Hofstad, Prioriello have proved a law of large number and a central limit theorem with respect to the annealed measure for the magnetization of the Ising model on some random graphs including the random 2-regular graph. We present a new proof of their results, which applies to all random regular graphs. In addition, we prove the existence of annealed pressure in the case of configuration model random graphs.
Consider a random regular graph with degree $d$ and of size $n$. Assign to each edge an i.i.d. exponential random variable with mean one. In this paper we establish a precise asymptotic expression for the maximum number of edges on the shortest-weight paths between a fixed vertex and all the other vertices, as well as between any pair of vertices. Namely, for any fixed $d geq 3$, we show that the longest of these shortest-weight paths has about $hat{alpha}log n$ edges where $hat{alpha}$ is the unique solution of the equation $alpha log(frac{d-2}{d-1}alpha) - alpha = frac{d-3}{d-2}$, for $alpha > frac{d-1}{d-2}$.