Accurate predictions of customers future lifetime value (LTV) given their attributes and past purchase behavior enables a more customer-centric marketing strategy. Marketers can segment customers into various buckets based on the predicted LTV and, in turn, customize marketing messages or advertising copies to serve customers in different segments better. Furthermore, LTV predictions can directly inform marketing budget allocations and improve real-time targeting and bidding of ad impressions. One challenge of LTV modeling is that some customers never come back, and the distribution of LTV can be heavy-tailed. The commonly used mean squared error (MSE) loss does not accommodate the significant fraction of zero value LTV from one-time purchasers and can be sensitive to extremely large LTVs from top spenders. In this article, we model the distribution of LTV given associated features as a mixture of zero point mass and lognormal distribution, which we refer to as the zero-inflated lognormal (ZILN) distribution. This modeling approach allows us to capture the churn probability and account for the heavy-tailedness nature of LTV at the same time. It also yields straightforward uncertainty quantification of the point prediction. The ZILN loss can be used in both linear models and deep neural networks (DNN). For model evaluation, we recommend the normalized Gini coefficient to quantify model discrimination and decile charts to assess model calibration. Empirically, we demonstrate the predictive performance of our proposed model on two real-world public datasets.