Do you want to publish a course? Click here

Modulating Peierls distortion of 1T_prime MoS2 via charge doping: a new charge density wave phase, reversible phase transition, and excellent electromechanical properties

158   0   0.0 ( 0 )
 Added by Zhe Liu Jefferson
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The 1T_prime phase of transition metal dichalcogenides (TMDs) is a low symmetry charge density wave (CDW) phase, which can be regarded as a periodically distorted structure (Peierls distortion) of the high symmetry 1T phase. In this paper, using density functional theory (DFT) calculations, we report that the positive charge (hole) injection is an effective method to modulate the Peierls distortion of MoS2 1T_prime for new CDW phase and superior electromechanical properties. A new stable CDW phase is discovered at hole doping level of ~ 0.10h+/atom, named as 1Tt_prime. The hole charging and discharging can induce a reversible phase transition of MoS2 among the three phases, 1T, 1T_prime and 1Tt_prime. Such reversible phase transition leads to superior electromechanical properties including a strain output as high as -5.8% with a small hysteresis loop, multi-step super-elasticity, and multi-shape memory effect, which are valuable in active electromechanical device designs at nanoscale. In-depth analysis on the change of electronic structure under hole doping was performed to understand the new CDW phase and the observed phase transition. Using charge doping to modulate the Peierls distortion in two-dimensional materials can serve as a general concept for nano-active material designs.



rate research

Read More

Upon excitation with an intense ultrafast laser pulse, a symmetry-broken ground state can undergo a non-equilibrium phase transition through pathways dissimilar from those in thermal equilibrium. Determining the mechanism underlying these photo-induced phase transitions (PIPTs) has been a long-standing issue in the study of condensed matter systems. To this end, we investigate the light-induced melting of a unidirectional charge density wave (CDW) material, LaTe$_3$. Using a suite of time-resolved probes, we independently track the amplitude and phase dynamics of the CDW. We find that a quick ($sim,$1$,$ps) recovery of the CDW amplitude is followed by a slower reestablishment of phase coherence. This longer timescale is dictated by the presence of topological defects: long-range order (LRO) is inhibited and is only restored when the defects annihilate. Our results provide a framework for understanding other PIPTs by identifying the generation of defects as a governing mechanism.
In this paper, the completed investigation of a possible superconducting phase in monolayer indium selenide is determined using first-principles calculations for both the hole and electron doping systems. The hole-doped dependence of the Fermi surface is exclusively fundamental for monolayer InSe. It leads to the extensive modification of the Fermi surface from six separated pockets to two pockets by increasing the hole densities. For low hole doping levels of the system, below the Lifshitz transition point, superconductive critical temperatures $T_c sim 55-75$ K are obtained within anisotropic Eliashberg theory depending on varying amounts of the Coulomb potential from 0.2 to 0.1. However, for some hole doping above the Lifshitz transition point, the combination of the temperature dependence of the bare susceptibility and the strong electron-phonon interaction gives rise to a charge density wave that emerged at a temperature far above the corresponding $T_c$. Having included non-adiabatic effects, we could carefully analyze conditions for which either a superconductive or charge density wave phase occurs in the system. In addition, monolayer InSe becomes dynamically stable by including non-adiabatic effects for different carrier concentrations at room temperature.
97 - B. Q. Lv , Alfred Zong , D. Wu 2021
Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe4. By combining transport, photoemission, diffraction, and x-ray absorption measurements, we observed that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids. The transition has an origin distinct from known mechanisms, lying entirely within the incommensurate charge-density-wave (CDW) phase of EuTe4 with no change in the CDW modulation periodicity. We interpret the hysteresis as an unusual switching of the relative CDW phases in different layers, a phenomenon unique to quasi-2D compounds that is not present in either purely 2D or strongly-coupled 3D systems. Our findings challenge the established theories on metastable states in density wave systems, pushing the boundary of understanding hysteretic transitions in a broken-symmetry state.
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a materials crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong Coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with it ab initio} electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time.
We report a rectangular charge density wave (CDW) phase in strained 1T-VSe$_2$ thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a{times}{sqrt{3a}} periodicity, as opposed to the previously reported hexagonal $4atimes4a$ structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same $4atimessqrt{3}a$ CDW periodicity and an energy gap of $2Delta_{CDW}=(9.1pm0.1)$ meV. The CDW energy gap evolves into a full gap at temperatures below 500 mK, indicating a transition to an insulating phase at ultra-low temperatures. First-principles calculations confirm the stability of both $4atimes4a$ and $4atimessqrt{3}a$ structures arising from soft modes in the phonon dispersion. The unconventional structure becomes preferred in the presence of strain, in agreement with experimental findings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا