Do you want to publish a course? Click here

Enabling remote quantum emission in 2D semiconductors via porous metallic networks

329   0   0.0 ( 0 )
 Added by Andrew Yeats
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction between two-dimensional crystals (2DCs) and metals is ubiquitous in 2D material research. Here we report how 2DC overlayers influence the recrystallization of relatively thick metal films and the subsequent synergetic benefits this provides for coupling surface plasmon-polaritons (SPPs) to photon emission in 2D semiconductors. We show that annealing 2DC/Au films on SiO2 results in a reverse epitaxial process where initially nanocrystalline Au films become highly textured and in close crystallographic registry to the 2D crystal overlayer. With continued annealing, the metal underlayer dewets to form an oriented pore enabled network (OPEN) film in which the 2DC overlayer remains suspended above or coats the inside of the metal pores. This OPEN film geometry supports SPPs launched by either direct laser excitation or by light emitted from the TMD semiconductor itself, where energy in-coupling and out-coupling occurs at the metal pore sites such that dielectric spacers between the metal and 2DC layer are unnecessary. At low temperatures a high density of single-photon emitters (SPEs) is present across an OPEN-WSe2 film, and we demonstrate non-local excitation of SPEs at a distance of 17 {mu}m with minimal loss of photon purity. Our results suggest the OPEN film geometry is a versatile platform that could facilitate the use of layered materials in quantum optics systems.



rate research

Read More

Twisted heterostructures of two-dimensional crystals offer almost unlimited scope for the design of novel metamaterials. Here we demonstrate a room-temperature ferroelectric semiconductor that is assembled using mono- or few- layer MoS2. These van der Waals heterostructures feature broken inversion symmetry, which, together with the asymmetry of atomic arrangement at the interface of two 2D crystals, enables ferroelectric domains with alternating out-of-plane polarisation arranged into a twist-controlled network. The latter can be moved by applying out-of-plane electrical fields, as visualized in situ using channelling contrast electron microscopy. The interfacial charge transfer for the observed ferroelectric domains is quantified using Kelvin probe force microscopy and agrees well with theoretical calculations. The movement of domain walls and their bending rigidity also agrees well with our modelling results. Furthermore, we demonstrate proof-of-principle field-effect transistors, where the channel resistance exhibits a pronounced hysteresis governed by pinning of ferroelectric domain walls. Our results show a potential venue towards room temperature electronic and optoelectronic semiconductor devices with built-in ferroelectric memory functions.
Monolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton dipolar field interaction in 1L-WS2 can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride. Under this geometry, dipolar exciton-exciton interaction becomes quadrupole-quadrupole interaction because of effective image dipoles formed inside the metal. The suppressed exciton-exciton interaction leads to a significantly improved quantum yield by an order of magnitude, which is also accompanied by a reduction in the exciton-exciton annihilation (EEA) rate, as confirmed by time-resolved optical measurements. A semiclassical model accounting for the screening of the dipole-dipole interaction qualitatively captures the dependence of EEA on exciton densities. Our results suggest that fundamental EEA processes in the TMD can be engineered through proximal metallic screening, which represents a practical approach towards high-efficiency 2D light emitters.
Reliable and precise measurements of the relative energy of band edges in semiconductors are needed to determine band gaps and band offsets, as well as to establish the band diagram of devices and heterostructures. These measurements are particularly important in the field of two-dimensional materials, in which many new semiconducting systems are becoming available through exfoliation of bulk crystals. For two-dimensional semiconductors, however, commonly employed techniques suffer from difficulties rooted either in the physics of these systems, or of technical nature. The very large exciton binding energy, for instance, prevents the band gap to be determined from a simple spectral analysis of photoluminescence, and the limited lateral size of atomically thin crystals makes the use of conventional scanning tunneling spectroscopy cumbersome. Ionic gate spectroscopy is a newly developed technique that exploits ionic gate field-effect transistors to determine quantitatively the relative alignment of band edges of two-dimensional semiconductors in a straightforward way, directly from transport measurements (i.e., from the transistor electrical characteristics). The technique relies on the extremely large geometrical capacitance of ionic gated devices that -- under suitable conditions -- enables a change in gate voltage to be directly related to a shift in chemical potential. Here we present an overview of ionic gate spectroscopy, and illustrate its relevance with applications to different two-dimensional semiconducting transition metal dichalcogenides and van der Waals heterostructures.
Twist-engineering of the electronic structure of van-der-Waals layered materials relies predominantly on band hybridization between layers. Band-edge states in transition-metal-dichalcogenide semiconductors are localized around the metal atoms at the center of the three-atom layer and are therefore not particularly susceptible to twisting. Here, we report that high-lying excitons in bilayer WSe2 can be tuned over 235 meV by twisting, with a twist-angle susceptibility of 8.1 meV/{deg}, an order of magnitude larger than that of the band-edge A-exciton. This tunability arises because the electronic states associated with upper conduction bands delocalize into the chalcogenide atoms. The effect gives control over excitonic quantum interference, revealed in selective activation and deactivation of electromagnetically induced transparency (EIT) in second-harmonic generation. Such a degree of freedom does not exist in conventional dilute atomic-gas systems, where EIT was originally established, and allows us to shape the frequency dependence, i.e. the dispersion, of the optical nonlinearity.
Monolayer and few-layer phosphorene are anisotropic quasi-two-dimensional (quasi-2D) van der Waals (vdW) semiconductors with a linear-dichroic light-matter interaction and a widely-tunable direct-band gap in the infrared frequency range. Despite recent theoretical predictions of strongly-bound excitons with unique properties, it remains experimentally challenging to probe the excitonic quasiparticles due to the severe oxidation during device fabrication. In this study, we report observation of strongly-bound excitons and trions with highly-anisotropic optical properties in intrinsic bilayer phosphorene, which are protected from oxidation by encapsulation with hexagonal boron nitride (hBN), in a field-effect transistor (FET) geometry. Reflection contrast and photoluminescence spectroscopy clearly reveal the linear-dichroic optical spectra from anisotropic excitons and trions in the hBN-encapsulated bilayer phosphorene. The optical resonances from the exciton Rydberg series indicate that the neutral exciton binding energy is over 100 meV even with the dielectric screening from hBN. The electrostatic injection of free holes enables an additional optical resonance from a positive trion (charged exciton) ~ 30 meV below the optical bandgap of the charge-neutral system. Our work shows exciting possibilities for monolayer and few-layer phosphorene as a platform to explore many-body physics and novel photonics and optoelectronics based on strongly-bound excitons with two-fold anisotropy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا