Do you want to publish a course? Click here

To Follow or not to Follow: Selective Imitation Learning from Observations

61   0   0.0 ( 0 )
 Added by Youngwoon Lee
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Learning from demonstrations is a useful way to transfer a skill from one agent to another. While most imitation learning methods aim to mimic an expert skill by following the demonstration step-by-step, imitating every step in the demonstration often becomes infeasible when the learner and its environment are different from the demonstration. In this paper, we propose a method that can imitate a demonstration composed solely of observations, which may not be reproducible with the current agent. Our method, dubbed selective imitation learning from observations (SILO), selects reachable states in the demonstration and learns how to reach the selected states. Our experiments on both simulated and real robot environments show that our method reliably performs a new task by following a demonstration. Videos and code are available at https://clvrai.com/silo .



rate research

Read More

With growing access to versatile robotics, it is beneficial for end users to be able to teach robots tasks without needing to code a control policy. One possibility is to teach the robot through successful task executions. However, near-optimal demonstrations of a task can be difficult to provide and even successful demonstrations can fail to capture task aspects key to robust skill replication. Here, we propose a learning from demonstration (LfD) approach that enables learning of robust task definitions without the need for near-optimal demonstrations. We present a novel algorithmic framework for learning tasks based on the ergodic metric -- a measure of information content in motion. Moreover, we make use of negative demonstrations -- demonstrations of what not to do -- and show that they can help compensate for imperfect demonstrations, reduce the number of demonstrations needed, and highlight crucial task elements improving robot performance. In a proof-of-concept example of cart-pole inversion, we show that negative demonstrations alone can be sufficient to successfully learn and recreate a skill. Through a human subject study with 24 participants, we show that consistently more information about a task can be captured from combined positive and negative (posneg) demonstrations than from the same amount of just positive demonstrations. Finally, we demonstrate our learning approach on simulated tasks of target reaching and table cleaning with a 7-DoF Franka arm. Our results point towards a future with robust, data-efficient LfD for novice users.
Navigating and understanding the real world remains a key challenge in machine learning and inspires a great variety of research in areas such as language grounding, planning, navigation and computer vision. We propose an instruction-following task that requires all of the above, and which combines the practicality of simulated environments with the challenges of ambiguous, noisy real world data. StreetNav is built on top of Google Street View and provides visually accurate environments representing real places. Agents are given driving instructions which they must learn to interpret in order to successfully navigate in this environment. Since humans equipped with driving instructions can readily navigate in previously unseen cities, we set a high bar and test our trained agents for similar cognitive capabilities. Although deep reinforcement learning (RL) methods are frequently evaluated only on data that closely follow the training distribution, our dataset extends to multiple cities and has a clean train/test separation. This allows for thorough testing of generalisation ability. This paper presents the StreetNav environment and tasks, models that establish strong baselines, and extensive analysis of the task and the trained agents.
175 - Boyi Liu , Lujia Wang , Ming Liu 2019
Humans are capable of learning a new behavior by observing others perform the skill. Robots can also implement this by imitation learning. Furthermore, if with external guidance, humans will master the new behavior more efficiently. So how can robots implement this? To address the issue, we present Federated Imitation Learning (FIL) in the paper. Firstly, a knowledge fusion algorithm deployed on the cloud for fusing knowledge from local robots is presented. Then, effective transfer learning methods in FIL are introduced. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning. FIL considers information privacy and data heterogeneity when robots share knowledge. It is suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a simplified self-driving task for robots (cars). The experimental results demonstrate that FIL is capable of increasing imitation learning of local robots in cloud robotic systems.
Learning from Observations (LfO) is a practical reinforcement learning scenario from which many applications can benefit through the reuse of incomplete resources. Compared to conventional imitation learning (IL), LfO is more challenging because of the lack of expert action guidance. In both conventional IL and LfO, distribution matching is at the heart of their foundation. Traditional distribution matching approaches are sample-costly which depend on on-policy transitions for policy learning. Towards sample-efficiency, some off-policy solutions have been proposed, which, however, either lack comprehensive theoretical justifications or depend on the guidance of expert actions. In this work, we propose a sample-efficient LfO approach that enables off-policy optimization in a principled manner. To further accelerate the learning procedure, we regulate the policy update with an inverse action model, which assists distribution matching from the perspective of mode-covering. Extensive empirical results on challenging locomotion tasks indicate that our approach is comparable with state-of-the-art in terms of both sample-efficiency and asymptotic performance.
209 - Yuke Zhu , Ziyu Wang , Josh Merel 2018
We propose a model-free deep reinforcement learning method that leverages a small amount of demonstration data to assist a reinforcement learning agent. We apply this approach to robotic manipulation tasks and train end-to-end visuomotor policies that map directly from RGB camera inputs to joint velocities. We demonstrate that our approach can solve a wide variety of visuomotor tasks, for which engineering a scripted controller would be laborious. In experiments, our reinforcement and imitation agent achieves significantly better performances than agents trained with reinforcement learning or imitation learning alone. We also illustrate that these policies, trained with large visual and dynamics variations, can achieve preliminary successes in zero-shot sim2real transfer. A brief visual description of this work can be viewed in https://youtu.be/EDl8SQUNjj0

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا