Do you want to publish a course? Click here

The Large $N$ Limit of Orbifold Vertex Operator Algebras

188   0   0.0 ( 0 )
 Added by Christoph Keller
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the large $N$ limit of permutation orbifolds of vertex operator algebras. To this end, we introduce the notion of nested oligomorphic permutation orbifolds and discuss under which conditions their fixed point VOAs converge. We show that if this limit exists, then it has the structure of a vertex algebra. Finally, we give an example based on $mathrm{GL}(N,q)$ for which the fixed point VOA limit is also the limit of the full permutation orbifold VOA.



rate research

Read More

308 - Alessandro DAndrea 2013
In this paper, I investigate the ascending chain condition of right ideals in the case of vertex operator algebras satisfying a finiteness and/or a simplicity condition. Possible applications to the study of finiteness of orbifold VOAs is discussed.
127 - Fei Qi 2021
In this paper we study the first cohomologies for the following three examples of vertex operator algebras: (i) the simple affine VOA associated to a simple Lie algebra with positive integral level; (ii) the Virasoro VOA corresponding to minimal models; (iii) the lattice VOA associated to a positive definite even lattice. We prove that in all these cases, the first cohomology $H^1(V, W)$ are given by the zero-mode derivations when $W$ is any $V$-module with an $N$-grading (not necessarily by the operator $L(0)$). This agrees with the conjecture made by Yi-Zhi Huang and the author in 2018. For negative energy representations of Virasoro VOA, the same conclusion holds when $W$ is $L(0)$-graded with lowest weight greater or equal to $-3$. Relationship between the first cohomology of the VOA and that of the associated Zhus algebra is also discussed.
It is proved that the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A_1^{(1)} of level k coincides with a certain W-algebra. In particular, a set of generators for the parafermion vertex operator algebra is determined.
199 - Chongying Dong , Qing Wang 2009
The structure of the parafermion vertex operator algebra associated to an integrable highest weight module for any affine Kac-Moody algebra is studied. In particular, a set of generators for this algebra has been determined.
162 - Chongying Dong , Wei Zhang 2008
It is proved that any vertex operator algebra for which the image of the Virasoro element in Zhus algebra is algebraic over complex numbers is finitely generated. In particular, any vertex operator algebra with a finite dimensional Zhus algebra is finitely generated. As a result, any rational vertex operator algebra is finitely generated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا