No Arabic abstract
We explore a novel search strategy for dark matter in the form of massive compact halo objects (MACHOs) such as primordial black holes or dense mini-halos in the mass range from $10^{-4}$ to 0.1 solar masses. These objects can gravitationally lens the signal of fast radio bursts (FRBs), producing a characteristic interference pattern in the frequency spectrum, similar to the previously studied femtolensing signal in gamma ray burst spectra. Unlike traditional searches using microlensing, FRB lensing will probe the abundance of MACHOs at cosmological distance scales (~Gpc) rather than just their distribution in the neighborhood of the Milky Way. The method is thus particularly relevant for dark mini-halos, which may be inaccessible to microlensing due to their finite spatial extent or tidal disruption in galaxies. We find that the main complication in FRB lensing will be interstellar scintillation in the FRBs host galaxy and in the Milky Way. Scintillation is difficult to quantify because it heavily depends on turbulence in the interstellar medium, which is poorly understood. We show that, nevertheless, for realistic scintillation parameters, FRB lensing can set competitive limits on compact dark matter object, and we back our findings with explicit simulations.
We explore the possibility that the Fast Radio Bursts (FRBs) are powered by magnetic reconnection in magnetars, triggered by Axion Quark Nugget (AQN) dark matter. In this model, the magnetic reconnection is ignited by the shock wave which develops when the nuggets Mach number $M gg 1$. These shock waves generate very strong and very short impulses expressed in terms of pressure $Delta p/psim M^2$ and temperature $Delta T/Tsim M^2$ in the vicinity of (would be) magnetic reconnection area. We find that the proposed mechanism produces a coherent emission which is consistent with current data, in particular the FRB energy requirements, the observed energy distribution, the frequency range and the burst duration. Our model allows us to propose additional tests which future data will be able to challenge.
Understanding the origin of fast radio bursts (FRBs) is a central unsolved problem in astrophysics that is severely hampered by their poorly determined distance scale. Determining the redshift distribution of FRBs appears to require arcsecond angular resolution, in order to associate FRBs with host galaxies. In this paper, we forecast prospects for determining the redshift distribution without host galaxy associations, by cross-correlating FRBs with a galaxy catalog such as the SDSS photometric sample. The forecasts are extremely promising: a survey such as CHIME/FRB that measures catalogs of $sim 10^3$ FRBs with few-arcminute angular resolution can place strong constraints on the FRB redshift distribution, by measuring the cross-correlation as a function of galaxy redshift $z$ and FRB dispersion measure $D$. In addition, propagation effects from free electron inhomogeneities modulate the observed FRB number density, either by shifting FRBs between dispersion measure (DM) bins or through DM-dependent selection effects. We show that these propagation effects, coupled with the spatial clustering between galaxies and free electrons, can produce FRB-galaxy correlations which are comparable to the intrinsic clustering signal. Such effects can be disentangled based on their angular and $(z, D)$ dependence, providing an opportunity to study not only FRBs but the clustering of free electrons.
Fast radio bursts (FRBs) are very short and bright transients visible over extragalactic distances. The radio pulse undergoes dispersion caused by free electrons along the line of sight, most of which are associated with the large-scale structure (LSS). The total dispersion measure therefore increases with the line of sight and provides a distance estimate to the source. We present the first measurement of the Hubble constant using the dispersion measure -- redshift relation of FRBs with identified host counterpart and corresponding redshift information. A sample of nine currently available FRBs yields a constraint of $H_0 = 62.3 pm 9.1 ,rm{km} ,rm{s}^{-1},rm{Mpc}^{-1}$, accounting for uncertainty stemming from the LSS, host halo and Milky Way contributions to the observed dispersion measure. The main current limitation is statistical, and we estimate that a few hundred events with corresponding redshifts are sufficient for a per cent measurement of $H_0$. This is a number well within reach of ongoing FRB searches. We perform a forecast using a realistic mock sample to demonstrate that a high-precision measurement of the expansion rate is possible without relying on other cosmological probes. FRBs can therefore arbitrate the current tension between early and late time measurements of $H_0$ in the near future.
Since their serendipitous discovery, Fast Radio Bursts (FRBs) have garnered a great deal of attention from both observers and theorists. A new class of radio telescopes with wide fields of view have enabled a rapid accumulation of FRB observations, confirming that FRBs originate from cosmological distances. The high occurrence rate of FRBs and the development of new instruments to observe them create opportunities for FRBs to be utilized for a host of astrophysical and cosmological studies. We focus on the rare, and as yet undetected, subset of FRBs that undergo repeated bursts and are strongly gravitationally lensed by intervening structure. An extremely precise timing of burst arrival times is possible for strongly lensed repeating FRBs, and we show how this timing precision enables the search for long wavelength gravitational waves, including those sourced by supermassive black hole binary systems. The timing of burst arrival for strongly lensed repeating FRBs is sensitive to gravitational wave sources near the FRB host galaxy, which may lie at cosmological distances and would therefore be extremely challenging to detect by other means. Timing of strongly lensed FRBs can also be combined with pulsar timing array data to search for correlated time delays characteristic of gravitational waves passing through the Earth.
In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE~2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background.