Do you want to publish a course? Click here

Alternative physics to understand wall turbulence: Navier-Stokes equations with modified linear dynamics

87   0   0.0 ( 0 )
 Added by Navid Constantinou
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite the nonlinear nature of wall turbulence, there is evidence that the energy-injection mechanisms sustaining wall turbulence can be ascribed to linear processes. The different scenarios stem from linear stability theory and comprise exponential instabilities from mean-flow inflection points, transient growth from non-normal operators, and parametric instabilities from temporal mean-flow variations, among others. These mechanisms, each potentially capable of leading to the observed turbulence structure, are rooted in simplified theories and conceptual arguments. Whether the flow follows any or a combination of them remains unclear. In the present study, we devise a collection of numerical experiments in which the Navier-Stokes equations are sensibly modified to quantify the role of the different linear mechanisms. This is achieved by direct numerical simulation of turbulent channel flows with constrained energy extraction from the streamwise-averaged mean-flow. We demonstrate that (i) transient growth alone is not sufficient to sustain wall turbulence and (ii) the flow remains turbulent when the exponential instabilities are suppressed. On the other hand, we show that (iii) transient growth combined with the parametric instability of the time-varying mean-flow is able to sustain turbulence.



rate research

Read More

We accomplish two major tasks. First, we show that the turbulent motion at large scales obeys Gaussian statistics in the interval 0 < Rlambda < 8.8, where Rlambda is the microscale Reynolds number, and that the Gaussian flow breaks down to yield place to anomalous scaling at the universal Reynolds number bounding the inequality above. In the inertial range of turbulence that emerges following the breakdown, the effective Reynolds number based on the turbulent viscosity, Rlambda* assumes this same constant value of about 9. This scenario works also for the emergence of turbulence from an initially non-turbulent state. Second, we derive expressions for the anomalous scaling exponents of structure functions and moments of spatial derivatives, by analyzing the Navier-Stokes equations in the form developed by Hopf. We present a novel procedure to close the Hopf equation, resulting in expressions for zetan in the entire range of allowable moment-order, n, and demonstrate that accounting for the temporal dynamics changes the scaling from normal to anomalous. For large n, the theory predicts the saturation of zetan with n, leading to two inferences: (a) the smallest length scale etan = LRe-1 << LRe-3/4, where Re is the large-scale Reynolds number, and (b) velocity excursions across even the smallest length scales can sometimes be as large as the large scale velocity itself. Theoretical predictions for each of these aspects are shown to be in quantitative agreement with available experimental and numerical data.
76 - B. Dubrulle , , J. D. Gibbon 2021
We study a correspondence between the multifractal model of turbulence and the Navier-Stokes equations in $d$ spatial dimensions by comparing their respective dissipation length scales. In Kolmogorovs 1941 theory the key parameter $h$, which is an exponent in the Navier-Stokes invariance scaling, is fixed at $h=1/3$ but is allowed a spectrum of values in multifractal theory. Taking into account all derivatives of the Navier-Stokes equations, it is found that for this correspondence to hold the multifractal spectrum $C(h)$ must be bounded from below such that $C(h) geq 1-3h$, which is consistent with the four-fifths law. Moreover, $h$ must also be bounded from below such that $h geq (1-d)/3$. When $d=3$ the allowed range of $h$ is given by $h geq -2/3$ thereby bounding $h$ away from $h=-1$. The implications of this are discussed.
There have been several efforts to Physics-informed neural networks (PINNs) in the solution of the incompressible Navier-Stokes fluid. The loss function in PINNs is a weighted sum of multiple terms, including the mismatch in the observed velocity and pressure data, the boundary and initial constraints, as well as the residuals of the Navier-Stokes equations. In this paper, we observe that the weighted combination of competitive multiple loss functions plays a significant role in training PINNs effectively. We establish Gaussian probabilistic models to define the loss terms, where the noise collection describes the weight parameter for each loss term. We propose a self-adaptive loss function method, which automatically assigns the weights of losses by updating the noise parameters in each epoch based on the maximum likelihood estimation. Subsequently, we employ the self-adaptive loss balanced Physics-informed neural networks (lbPINNs) to solve the incompressible Navier-Stokes equations,hspace{-1pt} includinghspace{-1pt} two-dimensionalhspace{-1pt} steady Kovasznay flow, two-dimensional unsteady cylinder wake, and three-dimensional unsteady Beltrami flow. Our results suggest that the accuracy of PINNs for effectively simulating complex incompressible flows is improved by adaptively appropriate weights in the loss terms. The outstanding adaptability of lbPINNs is not irrelevant to the initialization choice of noise parameters, which illustrates the robustness. The proposed method can also be employed in other problems where PINNs apply besides fluid problems.
Recently, physics-driven deep learning methods have shown particular promise for the prediction of physical fields, especially to reduce the dependency on large amounts of pre-computed training data. In this work, we target the physics-driven learning of complex flow fields with high resolutions. We propose the use of emph{Convolutional neural networks} (CNN) based U-net architectures to efficiently represent and reconstruct the input and output fields, respectively. By introducing Navier-Stokes equations and boundary conditions into loss functions, the physics-driven CNN is designed to predict corresponding steady flow fields directly. In particular, this prevents many of the difficulties associated with approaches employing fully connected neural networks. Several numerical experiments are conducted to investigate the behavior of the CNN approach, and the results indicate that a first-order accuracy has been achieved. Specifically for the case of a flow around a cylinder, different flow regimes can be learned and the adhered twin-vortices are predicted correctly. The numerical results also show that the training for multiple cases is accelerated significantly, especially for the difficult cases at low Reynolds numbers, and when limited reference solutions are used as supplementary learning targets.
Turbulent fluid flows are ubiquitous in nature and technology, and are mathematically described by the incompressible Navier-Stokes equations (INSE). A hallmark of turbulence is spontaneous generation of intense whirls, resulting from amplification of the fluid rotation-rate (vorticity) by its deformation-rate (strain). This interaction, encoded in the non-linearity of INSE, is non-local, i.e., depends on the entire state of the flow, constituting a serious hindrance in turbulence theory and in establishing regularity of INSE. Here, we unveil a novel aspect of this interaction, by separating strain into local and non-local contributions utilizing the Biot-Savart integral of vorticity in a sphere of radius R. Analyzing highly-resolved numerical turbulent solutions to INSE, we find that when vorticity becomes very large, the local strain over small R surprisingly counteracts further amplification. This uncovered self-attenuation mechanism is further shown to be connected to local Beltramization of the flow, and could provide a direction in establishing the regularity of INSE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا