No Arabic abstract
Due to their band-structure and optical properties, InAs/InP quantum dots (QDs) constitute a promising system for single-photon generation at third telecom window of silica fibers and for applications in quantum communication networks. However, obtaining the necessary low in-plane density of emitters remains a challenge. Such structures are also still less explored than their InAs/GaAs counterparts regarding optical properties of confined carriers. Here, we report on the growth via metal-organic vapor phase epitaxy and investigation of low-density InAs/InP QD-like structures, emitting in the range of 1.2-1.7 ${mu}$m, which includes the S, C, and L bands of the third optical window. We observe multiple photoluminescence (PL) peaks originating from flat QDs with height of small integer numbers of material monolayers. Temperature-dependent PL reveals redistribution of carriers between families of QDs. Via time-resolved PL, we obtain radiative lifetimes nearly independent of emission energy in contrast to previous reports on InAs/InP QDs, which we attribute to strongly height-dependent electron-hole correlations. Additionally, we observe neutral and charged exciton emission from spatially isolated emitters. Using the 8-band k${cdot}$p model and configuration-interaction method, we successfully reproduce energies of emission lines, the dispersion of exciton lifetimes, carrier activation energies, as well as the biexciton binding energy, which allows for a detailed and comprehensive analysis of the underlying physics.
Whereas the Si photonic platform is highly attractive for scalable optical quantum information processing, it lacks practical solutions for efficient photon generation. Self-assembled semiconductor quantum dots (QDs) efficiently emitting photons in the telecom bands ($1460-1625$ nm) allow for heterogeneous integration with Si. In this work, we report on a novel, robust, and industry-compatible approach for achieving single-photon emission from InAs/InP QDs heterogeneously integrated with a Si substrate. As a proof of concept, we demonstrate a simple vertical emitting device, employing a metallic mirror beneath the QD emitter, and experimentally obtained photon extraction efficiencies of $sim10%$. Nevertheless, the figures of merit of our structures are comparable with values previously only achieved for QDs emitting at shorter wavelength or by applying technically demanding fabrication processes. Our architecture and the simple fabrication procedure allows for the demonstration of a single-photon generation with purity $mathcal{P}>98%$ at the liquid helium temperature and $mathcal{P}=75%$ at $80$ K.
We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in count rate by nearly two orders of magnitude (0.4kcps to 35kcps) is obtained for quantum dots emitting in the telecom O-band. Using emission-wavelength-optimised waveguides, we demonstrate bright, narrow linewidth emission from single InAsP quantum dots with an unprecedented tuning range from 880nm to 1550nm. These results pave the way towards efficient single photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
The influence of hydride exposure on previously unreported self-assembled InP(As) nanostructures is investigated, showing an unexpected morphological variability with growth parameters, and producing a large family of InP(As) nanostructures by metalorganic vapour phase epitaxy, from dome and ring-like structures to double dot in a ring ensembles. Moreover, preliminary microphotoluminescence data are indicating the capped rings system as an interesting candidate for single quantum emitters at telecom wavelengths, potentially becoming a possible alternative to InAs QDs for quantum technology and telecom applications.
Realizing single photon sources emitting in the telecom band on silicon substrates is essential to reach complementary-metal-oxide-semiconductor (CMOS) compatible devices that secure communications over long distances. In this work, we propose the monolithic growth of needlelike tapered InAs/InP quantum dot-nanowires (QD-NWs) on silicon substrates with a small taper angle and a nanowire diameter tailored to support a single mode waveguide. Such a NW geometry is obtained by a controlled balance over axial and radial growths during the gold-catalyzed growth of the NWs by molecular beam epitaxy. This allows us to investigate the impact of the taper angle on the emission properties of a single InAs/InP QD-NW. At room temperature, a Gaussian far-field emission profile in the telecom O-band with a 30{deg} beam divergence angle is demonstrated from a single InAs QD embedded in a 2{deg} tapered InP NW. Moreover, single photon emission is observed at cryogenic temperature for an off-resonant excitation and the best result, $g^2(0) = 0.05$, is obtained for a 7{deg} tapered NW. This all-encompassing study paves the way for the monolithic growth on silicon of an efficient single photon source in the telecom band based on InAs/InP QD-NWs.
In this work we demonstrate a triggered single-photon source operating at the telecom C-band with photon extraction efficiency exceeding any reported values in this range. The non-classical light emission with low probability of the multiphoton events is realized with single InAs quantum dots (QDs) grown by molecular beam epitaxy and embedded directly in an InP matrix. Low QD spatial density on the order of 5x108 cm-2 to ~2x109 cm-2 and symmetric shape of these nanostructures together with spectral range of emission makes them relevant for quantum communication applications. The engineering of extraction efficiency is realized by combining a bottom distributed Bragg reflector consisting of 25 pairs of InP/In0.53Ga0.37Al0.1As layers and cylindrical photonic confinement structures. Realization of such technologically non-demanding approach even in a non-deterministic fashion results in photon extraction efficiency of (13.3+/-2)% into 0.4 numerical aperture detection optics at approx. 1560 nm emission wavelength, i.e., close to the center of the telecom C-band.