Do you want to publish a course? Click here

On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration

107   0   0.0 ( 0 )
 Added by Kanil Patel
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Uncertainty estimates help to identify ambiguous, novel, or anomalous inputs, but the reliable quantification of uncertainty has proven to be challenging for modern deep networks. In order to improve uncertainty estimation, we propose On-Manifold Adversarial Data Augmentation or OMADA, which specifically attempts to generate the most challenging examples by following an on-manifold adversarial attack path in the latent space of an autoencoder-based generative model that closely approximates decision boundaries between two or more classes. On a variety of datasets as well as on multiple diverse network architectures, OMADA consistently yields more accurate and better calibrated classifiers than baseline models, and outperforms competing approaches such as Mixup, as well as achieving similar performance to (at times better than) post-processing calibration methods such as temperature scaling. Variants of OMADA can employ different sampling schemes for ambiguous on-manifold examples based on the entropy of their estimated soft labels, which exhibit specific strengths for generalization, calibration of predicted uncertainty, or detection of out-of-distribution inputs.



rate research

Read More

Ensemble methods which average over multiple neural network predictions are a simple approach to improve a models calibration and robustness. Similarly, data augmentation techniques, which encode prior information in the form of invariant feature transformations, are effective for improving calibration and robustness. In this paper, we show a surprising pathology: combining ensembles and data augmentation can harm model calibration. This leads to a trade-off in practice, whereby improved accuracy by combining the two techniques comes at the expense of calibration. On the other hand, selecting only one of the techniques ensures good uncertainty estimates at the expense of accuracy. We investigate this pathology and identify a compounding under-confidence among methods which marginalize over sets of weights and data augmentation techniques which soften labels. Finally, we propose a simple correction, achieving the best of both worlds with significant accuracy and calibration gains over using only ensembles or data augmentation individually. Applying the correction produces new state-of-the art in uncertainty calibration across CIFAR-10, CIFAR-100, and ImageNet.
Recently proposed adversarial training methods show the robustness to both adversarial and original examples and achieve state-of-the-art results in supervised and semi-supervised learning. All the existing adversarial training methods consider only how the worst perturbed examples (i.e., adversarial examples) could affect the model output. Despite their success, we argue that such setting may be in lack of generalization, since the output space (or label space) is apparently less informative.In this paper, we propose a novel method, called Manifold Adversarial Training (MAT). MAT manages to build an adversarial framework based on how the worst perturbation could affect the distributional manifold rather than the output space. Particularly, a latent data space with the Gaussian Mixture Model (GMM) will be first derived.On one hand, MAT tries to perturb the input samples in the way that would rough the distributional manifold the worst. On the other hand, the deep learning model is trained trying to promote in the latent space the manifold smoothness, measured by the variation of Gaussian mixtures (given the local perturbation around the data point). Importantly, since the latent space is more informative than the output space, the proposed MAT can learn better a robust and compact data representation, leading to further performance improvement. The proposed MAT is important in that it can be considered as a superset of one recently-proposed discriminative feature learning approach called center loss. We conducted a series of experiments in both supervised and semi-supervised learning on three benchmark data sets, showing that the proposed MAT can achieve remarkable performance, much better than those of the state-of-the-art adversarial approaches. We also present a series of visualization which could generate further understanding or explanation on adversarial examples.
Modern neural networks have proven to be powerful function approximators, providing state-of-the-art performance in a multitude of applications. They however fall short in their ability to quantify confidence in their predictions - this is crucial in high-stakes applications that involve critical decision-making. Bayesian neural networks (BNNs) aim at solving this problem by placing a prior distribution over the networks parameters, thereby inducing a posterior distribution that encapsulates predictive uncertainty. While existing variants of BNNs based on Monte Carlo dropout produce reliable (albeit approximate) uncertainty estimates over in-distribution data, they tend to exhibit over-confidence in predictions made on target data whose feature distribution differs from the training data, i.e., the covariate shift setup. In this paper, we develop an approximate Bayesian inference scheme based on posterior regularisation, wherein unlabelled target data are used as pseudo-labels of model confidence that are used to regularise the models loss on labelled source data. We show that this approach significantly improves the accuracy of uncertainty quantification on covariate-shifted data sets, with minimal modification to the underlying model architecture. We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
Generative Adversarial Network(GAN) provides a good generative framework to produce realistic samples, but suffers from two recognized issues as mode collapse and unstable training. In this work, we propose to employ explicit manifold learning as prior to alleviate mode collapse and stabilize training of GAN. Since the basic assumption of conventional manifold learning fails in case of sparse and uneven data distribution, we introduce a new target, Minimum Manifold Coding (MMC), for manifold learning to encourage simple and unfolded manifold. In essence, MMC is the general case of the shortest Hamiltonian Path problem and pursues manifold with minimum Riemann volume. Using the standardized code from MMC as prior, GAN is guaranteed to recover a simple and unfolded manifold covering all the training data. Our experiments on both the toy data and real datasets show the effectiveness of MMCGAN in alleviating mode collapse, stabilizing training, and improving the quality of generated samples.
In this paper we propose a data augmentation method for time series with irregular sampling, Time-Conditional Generative Adversarial Network (T-CGAN). Our approach is based on Conditional Generative Adversarial Networks (CGAN), where the generative step is implemented by a deconvolutional NN and the discriminative step by a convolutional NN. Both the generator and the discriminator are conditioned on the sampling timestamps, to learn the hidden relationship between data and timestamps, and consequently to generate new time series. We evaluate our model with synthetic and real-world datasets. For the synthetic data, we compare the performance of a classifier trained with T-CGAN-generated data, against the performance of the same classifier trained on the original data. Results show that classifiers trained on T-CGAN-generated data perform the same as classifiers trained on real data, even with very short time series and small training sets. For the real world datasets, we compare our method with other techniques of data augmentation for time series, such as time slicing and time warping, over a classification problem with unbalanced datasets. Results show that our method always outperforms the other approaches, both in case of regularly sampled and irregularly sampled time series. We achieve particularly good performance in case with a small training set and short, noisy, irregularly-sampled time series.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا