Discreteness effects, $N-$body chaos and the onset of radial-orbit instability


Abstract in English

We study the stability of a family of spherical equilibrium models of self-gravitating systems, the so-called $gamma-$models with Osipkov-Merritt velocity anisotropy, by means of $N-$body simulations. In particular, we analyze the effect of self-consistent $N-$body chaos on the onset of radial-orbit instability (ROI). We find that degree of chaoticity of the system associated to its largest Lyapunov exponent $Lambda_{rm max}$ has no appreciable relation with the stability of the model for fixed density profile and different values of radial velocity anisotropy. However, by studying the distribution of the Lyapunov exponents $lambda_{rm m}$ of the individual particles in the single-particle phase space, we find that more anisotropic systems have a larger fraction of orbits with larger $lambda_{rm m}$.

Download