Do you want to publish a course? Click here

Seq2seq Translation Model for Sequential Recommendation

66   0   0.0 ( 0 )
 Added by Ke Sun
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The context information such as product category plays a critical role in sequential recommendation. Recent years have witnessed a growing interest in context-aware sequential recommender systems. Existing studies often treat the contexts as auxiliary feature vectors without considering the sequential dependency in contexts. However, such a dependency provides valuable clues to predict the users future behavior. For example, a user might buy electronic accessories after he/she buy an electronic product. In this paper, we propose a novel seq2seq translation architecture to highlight the importance of sequential dependency in contexts for sequential recommendation. Specifically, we first construct a collateral context sequence in addition to the main interaction sequence. We then generalize recent advancements in translation model from sequences of words in two languages to sequences of items and contexts in recommender systems. Taking the category information as an items context, we develop a basic coupled and an extended tripled seq2seq translation models to encode the category-item and item-category-item relations between the item and context sequences. We conduct extensive experiments on three real world datasets. The results demonstrate the superior performance of the proposed model compared with the state-of-the-art baselines.



rate research

Read More

123 - Xu Xie , Fei Sun , Zhaoyang Liu 2020
Sequential recommendation methods play a crucial role in modern recommender systems because of their ability to capture a users dynamic interest from her/his historical interactions. Despite their success, we argue that these approaches usually rely on the sequential prediction task to optimize the huge amounts of parameters. They usually suffer from the data sparsity problem, which makes it difficult for them to learn high-quality user representations. To tackle that, inspired by recent advances of contrastive learning techniques in the computer version, we propose a novel multi-task model called textbf{C}ontrastive textbf{L}earning for textbf{S}equential textbf{Rec}ommendation~(textbf{CL4SRec}). CL4SRec not only takes advantage of the traditional next item prediction task but also utilizes the contrastive learning framework to derive self-supervision signals from the original user behavior sequences. Therefore, it can extract more meaningful user patterns and further encode the user representation effectively. In addition, we propose three data augmentation approaches to construct self-supervision signals. Extensive experiments on four public datasets demonstrate that CL4SRec achieves state-of-the-art performance over existing baselines by inferring better user representations.
Modeling the complex interactions between users and items as well as amongst items themselves is at the core of designing successful recommender systems. One classical setting is predicting users personalized sequential behavior (or `next-item recommendation), where the challenges mainly lie in modeling `third-order interactions between a user, her previously visited item(s), and the next item to consume. Existing methods typically decompose these higher-order interactions into a combination of pairwise relationships, by way of which user preferences (user-item interactions) and sequential patterns (item-item interactions) are captured by separate components. In this paper, we propose a unified method, TransRec, to model such third-order relationships for large-scale sequential prediction. Methodologically, we embed items into a `transition space where users are modeled as translation vectors operating on item sequences. Empirically, this approach outperforms the state-of-the-art on a wide spectrum of real-world datasets. Data and code are available at https://sites.google.com/a/eng.ucsd.edu/ruining-he/.
134 - Chuhan Wu , Fangzhao Wu , Tao Qi 2021
News recommendation is often modeled as a sequential recommendation task, which assumes that there are rich short-term dependencies over historical clicked news. However, in news recommendation scenarios users usually have strong preferences on the temporal diversity of news information and may not tend to click similar news successively, which is very different from many sequential recommendation scenarios such as e-commerce recommendation. In this paper, we study whether news recommendation can be regarded as a standard sequential recommendation problem. Through extensive experiments on two real-world datasets, we find that modeling news recommendation as a sequential recommendation problem is suboptimal. To handle this challenge, we further propose a temporal diversity-aware news recommendation method that can promote candidate news that are diverse from recently clicked news, which can help predict future clicks more accurately. Experiments show that our approach can consistently improve various news recommendation methods.
346 - Mengqi Zhang , Shu Wu , Xueli Yu 2021
Modeling user preference from his historical sequences is one of the core problems of sequential recommendation. Existing methods in this field are widely distributed from conventional methods to deep learning methods. However, most of them only model users interests within their own sequences and ignore the dynamic collaborative signals among different user sequences, making it insufficient to explore users preferences. We take inspiration from dynamic graph neural networks to cope with this challenge, modeling the user sequence and dynamic collaborative signals into one framework. We propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects different user sequences through a dynamic graph structure, exploring the interactive behavior of users and items with time and order information. Furthermore, we design a Dynamic Graph Recommendation Network to extract users preferences from the dynamic graph. Consequently, the next-item prediction task in sequential recommendation is converted into a link prediction between the user node and the item node in a dynamic graph. Extensive experiments on three public benchmarks show that DGSR outperforms several state-of-the-art methods. Further studies demonstrate the rationality and effectiveness of modeling user sequences through a dynamic graph.
Modern deep neural networks (DNNs) have greatly facilitated the development of sequential recommender systems by achieving state-of-the-art recommendation performance on various sequential recommendation tasks. Given a sequence of interacted items, existing DNN-based sequential recommenders commonly embed each item into a unique vector to support subsequent computations of the user interest. However, due to the potentially large number of items, the over-parameterised item embedding matrix of a sequential recommender has become a memory bottleneck for efficient deployment in resource-constrained environments, e.g., smartphones and other edge devices. Furthermore, we observe that the widely-used multi-head self-attention, though being effective in modelling sequential dependencies among items, heavily relies on redundant attention units to fully capture both global and local item-item transition patterns within a sequence. In this paper, we introduce a novel lightweight self-attentive network (LSAN) for sequential recommendation. To aggressively compress the original embedding matrix, LSAN leverages the notion of compositional embeddings, where each item embedding is composed by merging a group of selected base embedding vectors derived from substantially smaller embedding matrices. Meanwhile, to account for the intrinsic dynamics of each item, we further propose a temporal context-aware embedding composition scheme. Besides, we develop an innovative twin-attention network that alleviates the redundancy of the traditional multi-head self-attention while retaining full capacity for capturing long- and short-term (i.e., global and local) item dependencies. Comprehensive experiments demonstrate that LSAN significantly advances the accuracy and memory efficiency of existing sequential recommenders.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا