No Arabic abstract
In this study, we use the transient thermal grating optical technique textemdash a non-contact, laser-based thermal metrology technique with intrinsically high accuracy textemdash to investigate room-temperature phonon-mediated thermal transport in two nanoporous holey silicon membranes with limiting dimensions of 100 nm and 250 nm respectively. We compare the experimental results to ab initio calculations of phonon-mediated thermal transport according to the phonon Boltzmann transport equation (BTE) using two different computational techniques. We find that the calculations conducted within the Casimir framework, i.e. based on the BTE with the bulk phonon dispersion and diffuse scattering from surfaces, are in quantitative agreement with the experimental data, and thus conclude that this framework is adequate for describing phonon-mediated thermal transport through holey silicon membranes with feature sizes on the order of 100 nm.
Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both solid and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membranebased silicon nanostructures is now reasonably well understood.
Hybrid spin-mechanical systems are a promising platform for future quantum technologies. Usually they require application of additional microwave fields to project integer spin to a readable state. We develop a theory of optically detected spin-mechanical resonance associated with half-integer spin defects in silicon carbide (SiC) membranes. It occurs when a spin resonance frequency matches a resonance frequency of a mechanical mode, resulting in a shortening of the spin relaxation time through resonantly enhanced spin-phonon coupling. The effect can be detected as an abrupt reduction of the photoluminescence intensity under optical pumping without application of microwave fields. We propose all-optical protocols based on such spin-mechanical resonance to detect external magnetic fields and mass with ultra-high sensitivity. We also discuss room-temperature nonlinear effects under strong optical pumping, including spin-mediated cooling and heating of mechanical modes. Our approach suggests a new concept for quantum sensing using spin-optomechanics.
Step junctions are often present in layered materials, i.e. where single-layer regions meet multi-layer regions, yet their effect on thermal transport is not understood to date. Here, we measure heat flow across graphene junctions (GJs) from monolayer to bilayer graphene, as well as bilayer to four-layer graphene for the first time, in both heat flow directions. The thermal conductance of the monolayer-bilayer GJ device ranges from ~0.5 to 9.1x10^8 Wm-2K-1 between 50 K to 300 K. Atomistic simulations of such GJ device reveal that graphene layers are relatively decoupled, and the low thermal conductance of the device is determined by the resistance between the two dis-tinct graphene layers. In these conditions the junction plays a negligible effect. To prove that the decoupling between layers controls thermal transport in the junction, the heat flow in both directions was measured, showing no evidence of thermal asymmetry or rectification (within experimental error bars). For large-area graphene applications, this signifies that small bilayer (or multilayer) islands have little or no contribution to overall thermal transport.
Two-dimensional crystalline membranes have recently been realized experimentally in such systems as graphene and molybdenum disulfide, sparking a resurgence in interest in their statistical properties. Thermal fluctuations can significantly affect the effective mechanical properties of properly thermalized membranes, renormalizing both bending rigidity and elastic moduli so that in particular they become stiffer to bending than their bare bending rigidity would suggest. We use molecular dynamics simulations to examine how the mechanical behavior of thermalized two-dimensional clamped ribbons (cantilevers) depends on their precise topology and geometry. We find that a simple slit smooths roughness as measured by the variance of height fluctuations. This counterintuitive effect may be due to the counter-posed coupling of the lips of the slit to twist in the intact regions of the ribbon.
The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au TESs lithographically defined on silicon nitride membranes 1 micron thick and 6 mm^2 in size. Trenches with variable depth were incorporated between the TES and the silicon frame in order to manage the thermal transport. It was shown that sharp features in the membrane surface, such as trenches, significantly impede the modes of phonon transport. A nonlinear dependence of thermal resistance on trench depth was observed. Partial perforation of silicon nitride membranes to control thermal transport could be useful in fabricating mechanically robust detector devices.