Do you want to publish a course? Click here

The Ionizing Photon Production Efficiency ($xi_{ion}$) Of Lensed Dwarf Galaxies At $z sim 2 $

69   0   0.0 ( 0 )
 Added by Najmeh Emami
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the ionizing photon production efficiency ($xi_{ion}$) of low-mass galaxies ($10^{7.8}$-$10^{9.8}$ $M_{odot}$) at $1.4<z<2.7$, allowing us to better understand the contribution of dwarf galaxies to the ionizing background and cosmic reionization. We target galaxies that are magnified by the strong lensing galaxy clusters Abell 1689, MACS J0717, and MACS J1149. We utilize Keck/MOSFIRE spectra to measure optical nebular emission line fluxes and HST imaging to measure the rest-UV and rest-optical photometry. We present two methods of stacking. First, we take the average of the log(L$_{Halpha}$ /L$_{UV}$) of galaxies in our sample to determine the typical log($xi_{ion}$). Second, we take the logarithm of the total L$_{Halpha}$ over the total L$_{UV}$. We prefer the latter as it provides the total ionizing UV luminosity density of galaxies when multiplied by the non-ionizing UV luminosity density from the UV luminosity function. log($xi_{ion}$) calculated from the second method is $sim$ 0.2 dex higher than the first method. We do not find any strong dependence between log($xi_{ion}$) and stellar mass, M$_{UV}$ or UV spectral slope ($beta$). We report a value of log($xi_{ion}$) $sim25.47pm 0.09$ for our UV-complete sample ($-22<M_{UV}<-17.3$) and $sim25.37pm0.11$ for our mass-complete sample ($7.8<log(M_*)<9.8)$. These values are consistent with measurements of more massive, more luminous galaxies in other high-redshift studies that use the same stacking technique. Our log($xi_{ion}$) is $0.2-0.3$ dex higher than low-redshift galaxies of similar mass, indicating an evolution in the stellar properties, possibly due to metallicity, age, or the prevalence of binary stars. We also find a correlation between log($xi_{ion}$) and the equivalent widths of H$alpha$ and [OIII]$lambda$5007 fluxes, confirming that these equivalent widths can be used to estimate $xi_{ion}$.



rate research

Read More

The ionizing photon production efficiency, $xi_{ion}$, is a critical parameter that provides a number of physical constraints to the nature of the early Universe, including the contribution of galaxies to the timely completion of the reionization of the Universe. Here we use KECK/MOSFIRE and ZFOURGE multi-band photometric data to explore the $xi_{ion}$ of a population of galaxies at $zsim2$ with $log_{10}(M_*/M_odot)sim9.0-11.5$. Our 130 Halpha detections show a median $log_{10}(xi_{ion}[Hz/erg])$ of $24.8pm0.5$ when dust corrected using a Calzetti et al. (2000) dust prescription. Our values are typical of mass/magnitude selected $xi_{ion}$ values observed in the $zsim2$ Universe. Using BPASSv2.2.1 and Starburst99 stellar population models with simple parametric star-formation-histories (SFH), we find that even with models that account for effects of stellar evolution with binaries/stellar rotation, model galaxies at $log_{10}(xi_{ion}[Hz/erg])lesssim25.0$ have low H$alpha$ equivalent widths (EW) and redder colors compared to our $zsim2$ observed sample. We find that introducing star-bursts to the SFHs resolve the tension with the models, however, due to the rapid time evolution of $xi_{ion}$, H$alpha$ EWs, and rest-frame optical colors, our Monte Carlo simulations of star-bursts show that random distribution of star-bursts in evolutionary time of galaxies are unlikely to explain the observed distribution. Thus, either our observed sample is specially selected based on their past SFH or stellar models require additional mechanisms to reproduce the observed high UV luminosity of galaxies for a given production rate of hydrogen ionizing photons.
81 - M. Perna , M. Curti , G. Cresci 2018
Gravitationally lensed systems allow a detailed view of galaxies at high redshift. High spatial- and spectral-resolution measurements of arc-like structures can offer unique constraints on the physical and dynamical properties of high-z systems. We present near-infrared spectra centred on the gravitational arcs of six known z ~ 2 lensed star-forming galaxies of stellar masses of 10^9-10^11 Msun and star formation rate (SFR) in the range between 10 and 400 Msun/yr. Ground layer adaptive optics (AO)-assisted observations are obtained at the Large Binocular Telescope (LBT) with the LUCI spectrographs during the commissioning of the ARGOS facility. We used MOS masks with curved slits to follow the extended arched structures and study the diagnostic emission lines. Combining spatially resolved kinematic properties across the arc-like morphologies, emission line diagnostics and archival information, we distinguish between merging and rotationally supported systems, and reveal the possible presence of ejected gas. For galaxies that have evidence for outflows, we derive outflow energetics and mass-loading factors compatible with those observed for stellar winds in local and high-z galaxies. We also use flux ratio diagnostics to derive gas-phase metallicities. The low signal-to-noise ratio in the faint H$beta$ and nitrogen lines allows us to derive an upper limit of ~ 0.15 dex for the spatial variations in metallicity along the slit for the lensed galaxy J1038. Analysed near-infrared spectra presented here represent the first scientific demonstration of performing AO-assisted multi-object spectroscopy with narrow curved-shape slits. The increased angular and spectral resolution, combined with the binocular operation mode with the 8.4-m-wide eyes of LBT, will allow the characterisation of kinematic and chemical properties of a large sample of galaxies at high-z in the near future.
186 - D. Schaerer 2016
We have recently discovered five Lyman continuum leaking galaxies at z~0.3, selected for their compactness, intense star-formation, and high [OIII]/[OII] ratio (Izotov et al. 2016ab). Here we derive their ionizing photon production efficiency, a fundamental quantity for inferring the number of photons available to reionize the Universe, for the first time for galaxies with confirmed strong Lyman continuum escape (fesc~6-13%). We find an ionizing photon production per unit UV luminosity, which is a factor 2-6 times higher than the canonical value when reported to their observed UV luminosity. After correction for extinction this value is close to the canonical value. The properties of our five Lyman continuum leakers are found to be very similar to those of the confirmed z=3.218 leaker Ion2 from de Barros et al. (2016) and very similar to those of typical star-forming galaxies at z>~6. Our results suggest that UV bright galaxies at high-z such as Lyman break galaxies can be Lyman continuum leakers and that their contribution to cosmic reionization may be underestimated.
We report the first sub-kiloparsec spatial resolution measurements of strongly inverted gas-phase metallicity gradients in two dwarf galaxies at $z$$sim$2. The galaxies have stellar masses $sim$$10^9M_odot$, specific star-formation rate $sim$20 Gyr$^{-1}$, and global metallicity $12+log({rm O/H})sim8.1$ (1/4 solar), assuming the Maiolino et al. (2008) strong line calibrations of OIII/Hb and OII/Hb. Their metallicity radial gradients are measured to be highly inverted, i.e., 0.122$pm$0.008 and 0.111$pm$0.017 dex/kpc, which is hitherto unseen at such small masses in similar redshift ranges. From the Hubble Space Telescope observations of the source nebular emission and stellar continuum, we present the 2-dimensional spatial maps of star-formation rate surface density, stellar population age, and gas fraction, which show that our galaxies are currently undergoing rapid mass assembly via disk inside-out growth. More importantly, using a simple chemical evolution model, we find that the gas fractions for different metallicity regions cannot be explained by pure gas accretion. Our spatially resolved analysis based on a more advanced gas regulator model results in a spatial map of net gaseous outflows, triggered by active central starbursts, that potentially play a significant role in shaping the spatial distribution of metallicity by effectively transporting stellar nucleosynthesis yields outwards. The relation between wind mass loading factors and stellar surface densities measured in different regions of our galaxies shows that a single type of wind mechanism, driven by either energy or momentum conservation, cannot explain the entire galaxy. These sources present a unique constraint on the effects of gas flows on the early phase of disk growth from the perspective of spatially resolved chemical evolution within individual systems.
53 - R.J. Bouwens , R. Smit , I. Labbe 2015
Galaxies represent one of the preferred candidate sources to drive the reionization of the universe. Even as gains are made in mapping the galaxy UV luminosity density to z>6, significant uncertainties remain regarding the conversion to the implied ionizing emissivity. The relevant unknowns are the Lyman-continuum (LyC) photon production efficiency xi_{ion} and the escape fraction f_{esc}. As we show here, the first of these unknowns is directly measureable in z=4-5 galaxies, based on the impact the Halpha line has on the observed IRAC fluxes. By computing a LyC photon production rate from the implied Halpha luminosities for a broad selection of z=4-5 galaxies and comparing this against the dust-corrected UV-continuum luminosities, we provide the first-ever direct estimates of the LyC photon production efficiency xi_{ion} for the z>~4 galaxy population. We find log_{10} xi_{ion}/[Hz/ergs] to have a mean value of 25.27_{-0.03}^{+0.03} and 25.34_{-0.02}^{+0.02} for sub-L* z=4-5 galaxies adopting Calzetti and SMC dust laws, respectively. Reassuringly, both values are consistent with standardly assumed xi_{ion}s in reionization models, with a slight preference for higher xi_{ion}s (by ~0.1 dex) adopting the SMC dust law. A modest ~0.03-dex increase in these estimates would result if the escape fraction for ionizing photons is non-zero and galaxies dominate the ionizing emissivity at z~4.4. High values of xi_{ion} (~25.5-25.8 dex) are derived for the bluest galaxies (beta<-2.3) in our samples, independent of dust law and consistent with results for a z=7.045 galaxy. Such elevated values of xi_{ion} would have important consequences, indicating that f_{esc} cannot be in excess of 13% unless the galaxy UV luminosity function does not extend down to -13 mag or the clumping factor is greater than 3. A low escape fraction would fit well with the low rate of LyC leakage observed at z~3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا