Do you want to publish a course? Click here

Comment on Direct Observation of Proton Emission in $^{11}$Be

381   0   0.0 ( 0 )
 Added by Marek Pfutzner
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We argue that conclusions of [PRL 123, 082501 (2019)] are incorrect. The authors present the direct observation of beta-delayed proton emission in the beta decay of 11Be. From the determined branching ratio for this process and from the energy spectrum of emitted protons the existence of a so far unobserved narrow resonance in 11Be was deduced. The given beta strength for the transition to this state is however wrong. In addition, we show that the combination of peak position and branching ratio is in strong disagreement with models considered by the authors. Furthermore, we identify several deficiencies in the analysis, and we provide possible sources of background, that could explain the error.



rate research

Read More

113 - Y. Ayyad , B. Olaizola , W. Mittig 2019
The elusive $beta^-text{p}^+$ decay was observed in $^{11}$Be by directly measuring the emitted protons and their energy distribution for the first time with the prototype Active Target Time Projection Chamber (pAT-TPC) in an experiment performed at ISAC-TRIUMF. The measured $beta^-text{p}^+$ branching ratio is orders of magnitude larger than any previous theoretical model predicted. This can be explained by the presence of a narrow resonance in $^{11}$B above the proton separation energy.
109 - T.B. Webb , S.M. Wang , K.W. Brown 2018
The structure of the extremely proton-rich nucleus $^{11}_{~8}$O$_3$, the mirror of the two-neutron halo nucleus $^{11}_{~3}$Li$_8$, has been studied experimentally for the first time. Following two-neutron knockout reactions with a $^{13}$O beam, the $^{11}$O decay products were detected after two-proton emission and used to construct an invariant-mass spectrum. A broad peak of width $sim$3,MeV was observed. Within the Gamow coupled-channel approach, it was concluded that this peak is a multiplet with contributions from the four-lowest $^{11}$O resonant states: $J^{pi}$=3/2$^-_1$, 3/2$^-_2$, 5/2$^+_1$, and 5/2$^+_2$. The widths and configurations of these states show strong, non-monotonic dependencies on the depth of the $p$-$^9$C potential. This unusual behavior is due to the presence of a broad threshold resonant state in $^{10}$N, which is an analog of the virtual state in $^{10}$Li in the presence of the Coulomb potential. After optimizing the model to the data, only a moderate isospin asymmetry between ground states of $^{11}$O and $^{11}$Li was found.
137 - D. Q. Fang , Y. G. Ma , X. Y. Sun 2016
The proton-proton momentum correlation functions ($C_{pp}(q)$) for kinematically complete decay channels of $^{23}$Al $rightarrow$ p + p + $^{21}$Na and $^{22}$Mg $rightarrow$ p + p + $^{20}$Ne have been measured at the RIKEN RI Beam Factory. From the very different correlation strength of $C_{pp}(q)$ for $^{23}$Al and $^{22}$Mg, the source size and emission time information were extracted from the $C_{pp}(q)$ data by assuming a Gaussian source profile in the correlation function calculation code (CRAB). The results indicated that the mechanism of two-proton emission from $^{23}$Al was mainly sequential emission, while that of $^{22}$Mg was mainly three-body simultaneous emission. By combining our earlier results of the two-proton relative momentum and the opening angle, it is pointed out that the mechanism of two-proton emission could be distinguished clearly.
The beta+ decay of very neutron deficient 43Cr has been studied by means of an imaging time projection chamber which allowed recording tracks of charged particles. Events of beta-delayed emission of one-, two-, and three protons were clearly identified. The absolute branching ratios for these channels were determined to be 81(4)%, 7.1(4)%, and 0.08(3)%, respectively. The 43Cr is thus established as the second case in which the beta-3p decay occurs. Although the feeding to the proton-bound states in 43V is expected to be negligible, the large branching ratio of 12(4)% for decays without proton emission is found.
163 - Y. D. Liu , H. W. Wang , Y. G. Ma 2015
The elastic resonance scattering protons decayed from $^{11}$B to the ground state of $^{10}$Be were measured using the thick-target technique in inverse kinematics at the Heavy Ion Research Facility in Lanzhou (HIRFL). The obtained excitation functions were well described by a multichannel R-matrix procedure under the kinematics process assumption of resonant elastic scattering. The excitation energy of the resonant states ranges from 13.0 to 17.0 MeV, and their resonant parameters such as the resonant energy E$_{x}$, the spin-parity J$^pi$, and the proton-decay partial width $Gamma_p$ were determined from R-matrix fits to the data. Two of these states around E$_{x}$ = 14.55 MeV [J$^pi$ = (3/2$^+$, 5/2$^+$), $Gamma_p$ = 475 $pm$ 80 keV] and E$_{x}$ = 14.74 MeV [J$^pi$ = 3/2$^-$, $Gamma_p$ = 830 $pm$ 145 keV], and a probably populated state at E$_x$ = 16.18 MeV [J$^pi$ =(1/2$^-$, 3/2$^-$), $Gamma_p$ $<$ 60 keV], are respectively assigned to the well-known states in $^{11}$B at 14.34 MeV, 15.29 MeV, and 16.43 MeV. The isospin of these three states were previously determined to be T = 3/2, but discrepancies exist in widths and energies due to the current counting statistics and energy resolution. We have compared these states with previous measurements, and the observation of the possibly populated resonance is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا