No Arabic abstract
In this paper, we propose a distributed algorithm for stochastic smooth, non-convex optimization. We assume a worker-server architecture where $N$ nodes, each having $n$ (potentially infinite) number of samples, collaborate with the help of a central server to perform the optimization task. The global objective is to minimize the average of local cost functions available at individual nodes. The proposed approach is a non-trivial extension of the popular parallel-restarted SGD algorithm, incorporating the optimal variance-reduction based SPIDER gradient estimator into it. We prove convergence of our algorithm to a first-order stationary solution. The proposed approach achieves the best known communication complexity $O(epsilon^{-1})$ along with the optimal computation complexity. For finite-sum problems (finite $n$), we achieve the optimal computation (IFO) complexity $O(sqrt{Nn}epsilon^{-1})$. For online problems ($n$ unknown or infinite), we achieve the optimal IFO complexity $O(epsilon^{-3/2})$. In both the cases, we maintain the linear speedup achieved by existing methods. This is a massive improvement over the $O(epsilon^{-2})$ IFO complexity of the existing approaches. Additionally, our algorithm is general enough to allow non-identical distributions of data across workers, as in the recently proposed federated learning paradigm.
Information compression is essential to reduce communication cost in distributed optimization over peer-to-peer networks. This paper proposes a communication-efficient linearly convergent distributed (COLD) algorithm to solve strongly convex optimization problems. By compressing innovation vectors, which are the differences between decision vectors and their estimates, COLD is able to achieve linear convergence for a class of $delta$-contracted compressors. We explicitly quantify how the compression affects the convergence rate and show that COLD matches the same rate of its uncompressed version. To accommodate a wider class of compressors that includes the binary quantizer, we further design a novel dynamical scaling mechanism and obtain the linearly convergent Dyna-COLD. Importantly, our results strictly improve existing results for the quantized consensus problem. Numerical experiments demonstrate the advantages of both algorithms under different compressors.
We investigate fast and communication-efficient algorithms for the classic problem of minimizing a sum of strongly convex and smooth functions that are distributed among $n$ different nodes, which can communicate using a limited number of bits. Most previous communication-efficient approaches for this problem are limited to first-order optimization, and therefore have emph{linear} dependence on the condition number in their communication complexity. We show that this dependence is not inherent: communication-efficient methods can in fact have sublinear dependence on the condition number. For this, we design and analyze the first communication-efficient distributed variants of preconditioned gradient descent for Generalized Linear Models, and for Newtons method. Our results rely on a new technique for quantizing both the preconditioner and the descent direction at each step of the algorithms, while controlling their convergence rate. We also validate our findings experimentally, showing fast convergence and reduced communication.
In this paper, we propose a novel distributed alternating direction method of multipliers (ADMM) algorithm with synergetic communication and computation, called SCCD-ADMM, to reduce the total communication and computation cost of the system. Explicitly, in the proposed algorithm, each node interacts with only part of its neighboring nodes, the number of which is progressively determined according to a heuristic searching procedure, which takes into account both the predicted convergence rate and the communication and computation costs at each iteration, resulting in a trade-off between communication and computation. Then the node chooses its neighboring nodes according to an importance sampling distribution derived theoretically to minimize the variance with the latest information it locally stores. Finally, the node updates its local information with a new update rule which adapts to the number of communication nodes. We prove the convergence of the proposed algorithm and provide an upper bound of the convergence variance brought by randomness. Extensive simulations validate the excellent performances of the proposed algorithm in terms of convergence rate and variance, the overall communication and computation cost, the impact of network topology as well as the time for evaluation, in comparison with the traditional counterparts.
Distributed optimization is concerned with using local computation and communication to realize a global aim of optimizing the sum of local objective functions. It has gained wide attention for a variety of applications in networked systems. This paper addresses a class of constrained distributed nonconvex optimization problems involving univariate objective functions, aiming to achieve global optimization without requiring local evaluations of gradients at every iteration. We propose a novel algorithm named CPCA, exploiting the notion of combining Chebyshev polynomial approximation, average consensus and polynomial optimization. The proposed algorithm is i) able to obtain $epsilon$ globally optimal solutions for any arbitrarily small given accuracy $epsilon$, ii) efficient in terms of both zeroth-order queries (i.e., evaluations of function values) and inter-agent communication, and iii) distributed terminable when the specified precision requirement is met. The key insight is to use polynomial approximations to substitute for general objective functions, and turn to solve an easier approximate version of the original problem. Due to the nice analytic properties owned by polynomials, this approximation not only facilitates efficient global optimization, but also allows the design of gradient-free iterations to reduce cumulative costs of queries and achieve geometric convergence when nonconvex problems are solved. We provide comprehensive analysis of the accuracy and complexities of the proposed algorithm.
Communication efficiency and robustness are two major issues in modern distributed learning framework. This is due to the practical situations where some computing nodes may have limited communication power or may behave adversarial behaviors. To address the two issues simultaneously, this paper develops two communication-efficient and robust distributed learning algorithms for convex problems. Our motivation is based on surrogate likelihood framework and the median and trimmed mean operations. Particularly, the proposed algorithms are provably robust against Byzantine failures, and also achieve optimal statistical rates for strong convex losses and convex (non-smooth) penalties. For typical statistical models such as generalized linear models, our results show that statistical errors dominate optimization errors in finite iterations. Simulated and real data experiments are conducted to demonstrate the numerical performance of our algorithms.