Do you want to publish a course? Click here

Multiband optical flux density and polarization microvariability study of optically bright blazars

85   0   0.0 ( 0 )
 Added by Arti Goyal
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of flux density, spectral index, and polarization intra-night monitoring studies of a sample of eight optically bright blazars, carried out by employing several small to moderate aperture (0.4,m to 1.5,m diameter) telescopes fitted with CCDs and polarimeters located in Europe, India, and Japan. The duty cycle of flux variability for the targets is found to be $sim 45$ percent, similar to that reported in earlier studies. The computed two-point spectral indices are found to be between 0.65 to 1.87 for our sample, comprised of low- and intermediate frequency peaked blazars, with one exception; they are also found to be statistically variable for about half the instances where `confirmed variability is detected in flux density. In the analysis of the spectral evolution of the targets on hourly timescale, a counter-clockwise loop (soft-lagging) is noted in the flux-spectral index plane on two occasions, and in one case a clear spectral flattening with the decreasing flux is observed. In our data set, we also observe a variety of flux-polarization degree variability patterns, including instances with a relatively straightforward anti-correlation, correlation, or counter-clockwise looping. These changes are typically reflected in the flux-polarization angle plane: the anti-correlation between the flux and polarization degree is accompanied by an anti-correlation between the polarization angle and flux, while the counter-clockwise flux-PD looping behaviour is accompanied by a clockwise looping in the flux-polarization angle representation. We discuss our findings in the framework of the internal shock scenario for blazar sources.



rate research

Read More

We report the results of optical monitoring for a sample of 11 blazars including 10 BL Lacs and 1 Flat Spectrum Radio Quasar (FSRQ). We have measured the multiband optical flux and colour variations in these blazars on intra-day and short-term timescales of months and have limited data for 2 more blazars. These photometric observations were made during 2009 to 2011, using six optical telescopes, four in Bulgaria, one in Greece and one in India. On short-term timescales we found significant flux variations in 9 of the sources and colour variations in 3 of them. Intra-day variability was detected on 6 nights for 2 sources out of the 18 nights and 4 sources for which we collected such data. These new optical observations of these blazars plus data from our previous published papers (for 3 more blazars) were used to analyze their spectral flux distributions in the optical frequency range. Our full sample for this purpose includes 6 high-synchrotron-frequency-peaked BL Lacs (HSPs), 3 intermediate-synchrotron-frequency-peaked BL Lacs (ISPs) and 6 low-synchrotron-frequency-peaked BL Lacs (LSPs; including both BL Lacs and FSRQs). We also investigated the spectral slope variability and found that the average spectral slopes of LSPs show a good accordance with the Synchrotron Self-Compton (SSC) loss dominated model. Our analysis supports previous studies that found that the spectra of the HSPs and FSRQs have significant additional emission components. The spectra of all these HSPs and LSPs get flatter when they become brighter, while for FSRQs the opposite appears to hold. This supports the hypothesis that there is a significant thermal contribution to the optical spectrum for FSRQs.
We present the results of the $gamma$-ray flux distribution study on the brightest blazars which are observed by the emph{Fermi}-LAT. We selected 50 brightest blazars based on the maximum number of detection reported in the LAT third AGN catalog. We performed standard unbinned maximum likelihood analysis on the LAT data during the period between August 2008 and December 2016, in order to obtain the average monthly flux. After quality cuts, blazars for which at least 90% of the total flux was survived were selected for the further study, and this includes 19 FSRQs and 19 BL Lacs. The Anderson-Darling and $chi^2$ tests suggest that the integrated monthly flux follow a log-normal distribution for all sources, except for three FSRQs for which neither a normal nor a log-normal distribution was preferred. A double log-normal flux distribution tendency were observed in these sources, though it has to be confirmed with improved statistics. We also found that, the standard deviation of the log-normal flux distribution increases with the mean spectral index of the blazar, and can be fitted with a line of slope 0.24$pm$0.04. We repeat our study on three additional brightest unclassified blazars to identify their flux distribution properties. Based on the features of their log-normal flux distribution, we infer these unclassified blazars may be closely associated with FSRQs. We also highlight that considering the log-normal behavior of the flux distribution of blazars, averaging their long term flux in linear scale can largely under estimate the nominal flux and this discrepancy can propagate down to the estimation of source parameters through spectral modeling.
Variability amplitudes larger than 1 magnitude over time-scales of a few tens of minutes have recently been reported in the optical light-curves of several blazars. In order to independently verify the real occurrence of such extremely violent events, we undertook an observational study of a selected sample of three blazars: PKS 0048-097, PKS 0754+100, and PKS 1510-089. Possible systematic error sources during data acquisition and reduction were carefully evaluated. We indeed found flux variability at intra-night time-scales in all three sources, although no extremely violent behaviour, as reported by other authors, was detected. We show that an incorrect choice of the stars used for differential photometry will, under fairly normal conditions, lead to spurious variability with large amplitudes on short time-scales. Wrong results of this kind can be avoided with the use of simple error-control techniques.
We present $gamma$-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 $gamma$-ray bright blazars over four years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their $gamma$-ray behavior. We derive $gamma$-ray, X-ray, and optical spectral indices, $alpha_gamma$, $alpha_X$, and $alpha_o$, respectively ($F_ upropto u^alpha$), and construct spectral energy distributions (SEDs) during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (i) significantly steeper $gamma$-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (ii) a small difference of $alpha_X$ within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (iii) a highly peaked distribution of X-ray spectral slopes of FSRQs at $sim-$0.60, but a very broad distribution of $alpha_X$ of BL Lacs during active states; (iv) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of $alpha_o$ of BL Lacs between states; and (v) a positive correlation between optical and $gamma$-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.
We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realised in nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا