Do you want to publish a course? Click here

On the rotator Hamiltonian for the SU$(N)times,$SU$(N)$ sigma-model in the delta-regime

73   0   0.0 ( 0 )
 Added by Janos Balog
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We investigate some properties of the standard rotator approximation of the SU$(N)times,$SU$(N)$ sigma-model in the delta-regime. In particular we show that the isospin susceptibility calculated in this framework agrees with that computed by chiral perturbation theory up to next-to-next to leading order in the limit $ell=L_t/Ltoinfty,.$ The difference between the results involves terms vanishing like $1/ell,,$ plus terms vanishing exponentially with $ell,$. As we have previously shown for the O($n$) model, this deviation can be described by a correction to the rotator spectrum proportional to the square of the quadratic Casimir invariant. Here we confront this expectation with analytic nonperturbative results on the spectrum in 2 dimensions for $N=3,.$



rate research

Read More

In a previous paper we found that the isospin susceptibility of the O($n$) sigma-model calculated in the standard rotator approximation differs from the next-to-next to leading order chiral perturbation theory result in terms vanishing like $1/ell,,$ for $ell=L_t/Ltoinfty$ and further showed that this deviation could be described by a correction to the rotator spectrum proportional to the square of the quadratic Casimir invariant. Here we confront this expectation with analytic nonperturbative results on the spectrum in 2 dimensions, by Balog and Hegedus for $n=3,4$ and by Gromov, Kazakov and Vieira for $n=4$. We also consider the case of 3 dimensions.
We compute the free energy in the presence of a chemical potential coupled to a conserved charge in the effective SU(N)xSU(N) scalar field theory to third order for asymmetric volumes in general d-dimensions, using dimensional regularization. We also compute the mass gap in a finite box with periodic boundary conditions.
We compute the isospin susceptibility in an effective O($n$) scalar field theory (in $d=4$ dimensions), to third order in chiral perturbation theory ($chi$PT) in the delta--regime using the quantum mechanical rotator picture. This is done in the presence of an additional coupling, involving a parameter $eta$, describing the effect of a small explicit symmetry breaking term (quark mass). For the chiral limit $eta=0$ we demonstrate consistency with our previous $chi$PT computations of the finite-volume mass gap and isospin susceptibility. For the massive case by computing the leading mass effect in the susceptibility using $chi$PT with dimensional regularization, we determine the $chi$PT expansion for $eta$ to third order. The behavior of the shape coefficients for long tube geometry obtained here might be of broader interest. The susceptibility calculated from the rotator approximation differs from the $chi$PT result in terms vanishing like $1/ell$ for $ell=L_t/L_stoinfty$. We show that this deviation can be described by a correction to the rotator spectrum proportional to the square of the quadratic Casimir invariant.
154 - M. Chu , P. Goddard 1994
The quantisation of the Wess-Zumino-Witten model on a circle is discussed in the case of $SU(N)$ at level $k$. The quantum commutation of the chiral vertex operators is described by an exchange relation with a braiding matrix, $Q$. Using quantum consistency conditions, the braiding matrix is found explicitly in the fundamental representation. This matrix is shown to be related to the Racah matrix for $U_t(SL(N))$. From calculating the four-point functions with the Knizhnik-Zamolodchikov equations, the deformation parameter $t$ is shown to be $t=exp({ipi /(k+N)})$ when the level $kge 2$. For $k=1$, there are two possible types of braiding, $t=exp({ipi /(1+N)})$ or $t=exp(ipi)$. In the latter case, the chiral vertex operators are constructed explicitly by extending the free field realisation a la Frenkel-Kac and Segal. This construction gives an explicit description of how to chirally factorise the $SU(N)_{k=1}$ WZW model.
In this paper we reconsider the problem of the Euler parametrization for the unitary groups. After constructing the generic group element in terms of generalized angles, we compute the invariant measure on SU(N) and then we determine the full range of the parameters, using both topological and geometrical methods. In particular, we show that the given parametrization realizes the group $SU(N+1)$ as a fibration of U(N) over the complex projective space $mathbb{CP}^n$. This justifies the interpretation of the parameters as generalized Euler angles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا