Do you want to publish a course? Click here

Pressure-induced superconductivity and structural transition in ferromagnetic Cr2Si2Te6

78   0   0.0 ( 0 )
 Added by Meng Wang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of intrinsic magnetism in atomically thin two-dimensional transition-metal trichalcogenides has attracted intense research interest due to the exotic properties of magnetism and potential applications in devices. Pressure has proven to be an effective tool to manipulate the crystal and electronic structures of the materials. Here, we report investigations on ferromagnetic van der Waals Cr2Si2Te6 via high-pressure synchrotron x-ray diffraction, electrical resistance, Hall resistance, and magnetoresistance measurements. Under compression, Cr2Si2Te6 simultaneously undergoes a structural transition, emergence of superconductivity at 3 K, sign change of the magnetoresistance, and dramatic change of the Hall coefficient at ~8 GPa. The superconductivity persists up to the highest measured pressure of 47.1 GPa with a maximum Tc = 4.5 K at ~30 GPa. The discovery of superconductivity in the two-dimensional van der Waals ferromagnetic Cr-based Cr2Si2Te6 provides new perspectives to explore superconductivity and the interplay between superconductivity and magnetism.



rate research

Read More

We investigate the pressure and temperature dependence of the lattice dynamics of the underdoped, stoichiometric, high temperature superconductor YBa2Cu4O8 by means of Raman spectroscopy and ab initio calculations. This system undergoes a reversible pressure-induced structural phase transition around 10 GPa to a collapsed orthorhombic structure, that is well reproduced by the calculation. The coupling of the B1g-like buckling phonon mode to the electronic continuum is used to probe superconductivity. In the low pressure phase, self-energy effects through the superconducting transition renormalize this phonon, and the amplitude of this renormalization strongly increases with pressure. Whereas our calculation indicates that this modes coupling to the electronic system is only marginally affected by the structural phase transition, the aforementioned renormalization is completely suppressed in the high pressure phase, demonstrating that under hydrostatic pressures higher than 10 GPa, superconductivity in YBa2Cu4O8 is greatly weakened or obliterated.
High pressure electrical resistance and x-ray diffraction measurements have been performed on ruthenium-doped Ba(Fe0.9Ru0.1)2As2, up to pressures of 32 GPa and down to temperatures of 10 K, using designer diamond anvils under quasi-hydrostatic conditions. At 3.9 GPa, there is an evidence of pressure-induced superconductivity with Tc onset of 24 K and zero resistance at Tc zero of ~14.5 K. The superconducting transition temperature reaches maximum at ~5.5 GPa and then decreases gradually with increase in pressure before completely disappearing above 11.5 GPa. Upon increasing pressure at 200 K, an isostructural phase transition from a tetragonal (I4/mmm) phase to a collapsed tetragonal phase is observed at 14 GPa and the collapsed phase persists up to at least 30 GPa. The changes in the unit cell dimensions are highly anisotropic across the phase transition and are qualitatively similar to those observed in undoped BaFe2As2 parent.
The phase separation of the ferromagnetic (FM) and paramagnetic (PM) phases in the superconducting (SC) state of UCoGe at the FM critical region was investigated using $^{59}$Co nuclear quadrupole resonance (NQR) technique by taking advantage of its site-selective feature. The NQR measurements revealed that the first-order quantum phase transition occurs between the FM and the PM states. The nuclear spin-lattice relaxation rate $1/T_1$ exhibited a clear drop at the SC state in the PM phase, whereas it was not detected in the FM phase, which indicates that the superconductivity in the FM phase becomes weaker at the FM critical region due to the presence of the PM SC state. This result suggests that the SC condensation energy of the PM SC state is equal or larger than that of the FM SC state in this region. The pressure-temperature phase diagram of UCoGe was modified by taking the results from this study into account.
High-pressure electrical resistance measurements have been performed on single crystal Ba0.5Sr0.5Fe2As2 platelets to pressures of 16 GPa and temperatures down to 10 K using designer diamond anvils under quasi-hydrostatic conditions with an insulating steatite pressure medium. The resistance measurements show evidence of pressure-induced superconductivity with an onset transition temperature at ~31 K and zero resistance at ~22 K for a pressure of 3.3 GPa. The transition temperature decreases gradually with increasing in pressure before completely disappearing for pressures above 12 GPa. The present results provide experimental evidence that a solid solution of two 122-type materials, e.g., Ba1-x.SrxFe2As2 (0 < x <1), can also exhibit superconductivity under high pressure
107 - T.L. Hung 2020
The rich phenomena in the FeSe and related compounds have attracted great interests as it provides fertile material to gain further insight into the mechanism of high temperature superconductivity. A natural follow-up work was to look into the possibility of superconductivity in MnSe. It was shown that MnP becomes superconducting with Tc ~ 1 K under pressure. We demonstrated in this work that high pressure can effectively suppress the complex magnetic characters of MnSe crystal when observed at ambient condition. MnSe under pressure is found to undergo several structural transformations: the cubic phase first partially transforms to the hexagonal phase at about 12 GPa, the crystal exhibits the coexistence of cubic, hexagonal and orthorhombic phases from 16 GPa to 30 GPa, and above 30 GPa the crystal shows a single orthorhombic phase. Superconductivity with Tc ~ 5 K was first observed at pressure ~12 GPa by magnetic measurements (~16 GPa by resistive measurements). The highest Tc is ~ 9 K (magnetic result) at ~35 GPa. Our observations suggest the observed superconductivity may closely relate to the pressure-induced structural change. However, the interface between the metallic and insulating boundaries may also play an important role to the pressure induced superconductivity in MnSe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا