Uncertainty Principles Associated to Sets Satisfying the Geometric Control Condition


Abstract in English

In this paper, we study forms of the uncertainty principle suggested by problems in control theory. First, we prove an analogue of the Paneah-Logvinenko-Sereda Theorem characterizing sets which satisfy the Geometric Control Condition (GCC). This result is applied to get a uniqueness result for functions with spectrum supported on sufficiently flat sets. One corollary is that a function with spectrum in an annulus of a given thickness can be bounded, in $L^2$-norm, from above by its restriction to any open GCC set, independent of the radius of the annulus. This result is applied to the energy decay rates for damped fractional wave equations.

Download