No Arabic abstract
Most recent observation of topological Fermi arcs on the surface of manyfold degenerate B20 systems, CoSi and RhSi, have attracted enormous research interests. Although an another isostructural system, FeSi, has been predicted to show bulk chiral fermions, it is yet to be clear theoretically and as well experimentally that whether FeSi possesses the topological surface Fermi arcs associated with the exotic chiral fermions in vicinity of the Fermi level. In this contribution, using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), we present the low-energy electronic structure of FeSi. We further report the surface state calculations to provide insights into the surface band structure of FeSi near the Fermi level. Unlike in CoSi or RhSi, FeSi has no topological Fermi arcs near the Fermi level as confirmed both from ARPES and surface state calculations. Further, the ARPES data show spin-orbit coupling (SOC) band splitting of 40 meV, which is in good agreement with bulk band structure calculations. We noticed an anomalous temperature dependent resistivity in FeSi which can be understood through the electron-phonon interactions as we find a Debye energy of 80 meV from the ARPES data.
X-ray absorption spectroscopy (XAS) is one of the most widely used experimental techniques to study the electronic and spatial structure of materials. Fluorescence yield mode is bulk-sensitive, but has several serious problems coming from saturation effects. In this study, we show the usefulness of partial fluorescence yields in addressing these problems. We discuss the different behaviors of La2NiMnO6 and LiMnO2 at the Mn 2p absorption edges. The total fluorescence yield produces misleading spectra for LiMnO2 due to the absence of high-Z (Z: atomic number) elements. We conclude that the measurement of the inverse partial fluorescence yield is essential in studies of LiMnO2, which is a hotly debated Li-ion battery material.
Combinations of non-trivial band topology and long-range magnetic order hold promise for realizations of novel spintronic phenomena, such as the quantum anomalous Hall effect and the topological magnetoelectric effect. Following theoretical advances material candidates are emerging. Yet, a compound with a band-inverted electronic structure and an intrinsic net magnetization remains unrealized. MnBi$_2$Te$_4$ is a candidate for the first antiferromagnetic topological insulator and the progenitor of a modular (Bi$_2$Te$_3$)$_n$(MnBi$_2$Te$_4$) series. For $n$ = 1, we confirm a non-stoichiometric composition proximate to MnBi$_4$Te$_7$ and establish an antiferromagnetic state below 13 K followed by a state with net magnetization and ferromagnetic-like hysteresis below 5 K. Angle-resolved photoemission experiments and density-functional calculations reveal a topological surface state on the MnBi$_4$Te$_7$(0001) surface, analogous to the non-magnetic parent compound Bi$_2$Te$_3$. Our results render MnBi$_4$Te$_7$ as a band-inverted material with an intrinsic net magnetization and a complex magnetic phase diagram providing a versatile platform for the realization of different topological phases.
Topological states in quantum materials are defined by non-trivial topological invariants, such as the Chern number, which are properties of their bulk wave functions. A remarkable consequence of topological wave functions is the emergence of edge modes, a phenomenon known as bulk-edge correspondence, that gives rise to quantized or chiral physical properties. While edge modes are widely presented as signatures of non-trivial topology, how bulk wave functions can manifest explicitly topological properties remains unresolved. Here, using high-resolution inelastic x-ray spectroscopy (IXS) combined with first principles calculations, we report experimental signatures of chiral wave functions in the bulk phonon spectrum of BaPtGe, which we show to host a previously undiscovered twofold degenerate quadruple Weyl node. The chirality of the degenerate phononic wave function yields a non-trivial phonon dynamical structure factor, S(Q,$omega$), along high-symmetry directions, that is in excellent agreement with numerical and model calculations. Our results establish IXS as a powerful tool to uncover topological wave functions, providing a key missing ingredient in the study of topological quantum matter.
ZrSiS-type materials represent a large material family with unusual coexistence of topological nonsymmorphic Dirac fermions and nodal-line fermions. As a special group of ZrSiS-family, LnSbTe (Ln = Lanthanide rare earth) compounds provide a unique opportunity to explore new quantum phases due to the intrinsic magnetism induced by Ln. Here we report the single crystal growth and characterization of NdSbTe, a previously unexplored LnSbTe compound. NdSbTe has an antiferromagnetic ground state with field-driven metamagnetic transitions similar to other known LnSbTe, but exhibits distinct enhanced electronic correlations characterized by large a Sommerfeld coefficient of 115 mJ/mol $K^2$, which is the highest among the known LnSbTe compounds. Furthermore, our transport studies have revealed the coupling with magnetism and signatures of Kondo localization. All these findings establish NdSbTe as a new platform for observing novel phenomena arising from the interplay between magnetism, topology, and electron correlations.
We report on results from high-energy spectroscopic measurements on CeFe2, a system of particular interest due to its anomalous ferromagnetism with an unusually low Curie temperature and small magnetization compared to the other rare earth-iron Laves phase compounds. Our experimental results indicate very strong hybridization of the Ce 4f states with the delocalized band states, mainly the Fe 3d states. In the interpretation and analysis of our measured spectra, we have made use of two different theoretical approaches: The first one is based on the Anderson impurity model, with surface contributions explicitly taken into account. The second method consists of band-structure calculations for bulk CeFe2. The analysis based on the Anderson impurity model gives calculated spectra in good agreement with the whole range of measured spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably reduced at the surface, resulting in even stronger hybridization in the bulk than previously thought. The band-structure calculations are ab initio full-potential linear muffin-tin orbital calculations within the local-spin-density approximation of the density functional. The Ce 4f electrons were treated as itinerant band electrons. Interestingly, the Ce 4f partial density of states obtained from the band-structure calculations also agree well with the experimental spectra concerning both the 4f peak position and the 4f bandwidth, if the surface effects are properly taken into account. In addition, results, notably the partial spin magnetic moments, from the band-structure calculations are discussed in some detail and compared to experimental findings and earlier calculations.