Do you want to publish a course? Click here

Expansion for the critical point of site percolation: the first three terms

54   0   0.0 ( 0 )
 Added by Kilian Matzke
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We expand the critical point for site percolation on the $d$-dimensional hypercubic lattice in terms of inverse powers of $2d$, and we obtain the first three terms rigorously. This is achieved using the lace expansion.



rate research

Read More

56 - J. van den Berg , H. Don 2019
Consider critical site percolation on $mathbb{Z}^d$ with $d geq 2$. We prove a lower bound of order $n^{- d^2}$ for point-to-point connection probabilities, where $n$ is the distance between the points. Most of the work in our proof concerns a `construction which finally reduces the problem to a topological one. This is then solved by applying a topological fact, which follows from Brouwers fixed point theorem. Our bound improves the lower bound with exponent $2 d (d-1)$, used by Cerf in 2015 to obtain an upper bound for the so-called two-arm probabilities. Apart from being of interest in itself, our result gives a small improvement of the bound on the two-arm exponent found by Cerf.
86 - Zhongyang Li 2020
We prove that for a non-amenable, locally finite, connected, transitive, planar graph with one end, any automorphism invariant site percolation on the graph does not have exactly 1 infinite 1-cluster and exactly 1 infinite 0-cluster a.s. If we further assume that the site percolation is insertion-tolerant and a.s.~there exists a unique infinite 0-cluster, then a.s.~there are no infinite 1-clusters. The proof is based on the analysis of a class of delicately constructed interfaces between clusters and contours. Applied to the case of i.i.d.~Bernoulli site percolation on infinite, connected, locally finite, transitive, planar graphs, these results solve two conjectures of Benjamini and Schramm (Conjectures 7 and 8 in cite{bs96}) in 1996.
179 - Akira Sakai 2007
We provide a complete proof of the diagrammatic bounds on the lace-expansion coefficients for oriented percolation, which are used in [arXiv:math/0703455] to investigate critical behavior for long-range oriented percolation above 2min{alpha,2} spatial dimensions.
249 - Leonardo T. Rolla 2017
In this paper we consider independent site percolation in a triangulation of $mathbb{R}^2$ given by adding $sqrt{2}$-long diagonals to the usual graph $mathbb{Z}^2$. We conjecture that $p_c=frac{1}{2}$ for any such graph, and prove it for almost every such graph.
We consider first passage percolation on the configuration model. Once the network has been generated each edge is assigned an i.i.d. weight modeling the passage time of a message along this edge. Then independently two vertices are chosen uniformly at random, a sender and a recipient, and all edges along the geodesic connecting the two vertices are coloured in red (in the case that both vertices are in the same component). In this article we prove local limit theorems for the coloured graph around the recipient in the spirit of Benjamini and Schramm. We consider the explosive regime, in which case the random distances are of finite order, and the Malthusian regime, in which case the random distances are of logarithmic order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا