Do you want to publish a course? Click here

Doublade: Unknown Vulnerability Detection in Smart Contracts Via Abstract Signature Matching and Refined Detection Rules

89   0   0.0 ( 0 )
 Added by Jiaming Ye
 Publication date 2019
and research's language is English
 Authors Yinxing Xue




Ask ChatGPT about the research

With the prosperity of smart contracts and the blockchain technology, various security analyzers have been proposed from both the academia and industry to address the associated risks. Yet, there does not exist a high-quality benchmark of smart contract vulnerability for security research. In this study, we propose an approach towards building a high-quality vulnerability benchmark. Our approach consists of two parts. First, to improve recall, we propose to search for similar vulnerabilities in an automated way by leveraging the abstract vulnerability signature (AVS). Second, to remove the false positives (FPs) due to AVS-based matching, we summarize the detection rules of existing tools and apply the refined rules by considering various defense mechanisms (DMs). By integrating AVS-based code matching and the refined detection rules (RDR), our approach achieves higher precision and recall. On the collected 76,354 contracts, we build a benchmark consisting of 1,219 vulnerabilities covering five different vulnerability types identified together by our tool (DOUBLADE) and other three scanners. Additionally, we conduct a comparison between DOUBLADE and the others, on an additional 17,770 contracts. Results show that DOUBLADE can yield a better detection accuracy with similar execution time.



rate research

Read More

In this work we propose Dynamit, a monitoring framework to detect reentrancy vulnerabilities in Ethereum smart contracts. The novelty of our framework is that it relies only on transaction metadata and balance data from the blockchain system; our approach requires no domain knowledge, code instrumentation, or special execution environment. Dynamit extracts features from transaction data and uses a machine learning model to classify transactions as benign or harmful. Therefore, not only can we find the contracts that are vulnerable to reentrancy attacks, but we also get an execution trace that reproduces the attack.
With its unique advantages such as decentralization and immutability, blockchain technology has been widely used in various fields in recent years. The smart contract running on the blockchain is also playing an increasingly important role in decentralized application scenarios. Therefore, the automatic detection of security vulnerabilities in smart contracts has become an urgent problem in the application of blockchain technology. Hyperledger Fabric is a smart contract platform based on enterprise-level licensed distributed ledger technology. However, the research on the vulnerability detection technology of Hyperledger Fabric smart contracts is still in its infancy. In this paper, we propose HFContractFuzzer, a method based on Fuzzing technology to detect Hyperledger Fabric smart contracts, which combines a Fuzzing tool for golang named go-fuzz and smart contracts written by golang. We use HFContractFuzzer to detect vulnerabilities in five contracts from typical sources and discover that four of them have security vulnerabilities, proving the effectiveness of the proposed method.
Smart Contracts (SCs) in Ethereum can automate tasks and provide different functionalities to a user. Such automation is enabled by the `Turing-complete nature of the programming language (Solidity) in which SCs are written. This also opens up different vulnerabilities and bugs in SCs that malicious actors exploit to carry out malicious or illegal activities on the cryptocurrency platform. In this work, we study the correlation between malicious activities and the vulnerabilities present in SCs and find that some malicious activities are correlated with certain types of vulnerabilities. We then develop and study the feasibility of a scoring mechanism that corresponds to the severity of the vulnerabilities present in SCs to determine if it is a relevant feature to identify suspicious SCs. We analyze the utility of severity score towards detection of suspicious SCs using unsupervised machine learning (ML) algorithms across different temporal granularities and identify behavioral changes. In our experiments with on-chain SCs, we were able to find a total of 1094 benign SCs across different granularities which behave similar to malicious SCs, with the inclusion of the smart contract vulnerability scores in the feature set.
Ethereum smart contracts are programs that can be collectively executed by a network of mutually untrusted nodes. Smart contracts handle and transfer assets of values, offering strong incentives for malicious attacks. Intrusion attacks are a popular type of malicious attacks. In this paper, we propose ContractGuard, the first intrusion detection system (IDS) to defend Ethereum smart contracts against such attacks. Like IDSs for conventional programs, ContractGuard detects intrusion attempts as abnormal control flow. However, existing IDS techniques/tools are inapplicable to Ethereum smart contracts due to Ethereums decentralized nature and its highly restrictive execution environment. To address these issues, we design ContractGuard by embedding it in the contracts to profile context-tagged acyclic paths, and optimizing it under the Ethereum gas-oriented performance model. The main goal is to minimize the overheads, to which the users will be extremely sensitive since the cost needs to be paid upfront in digital concurrency. Empirical investigation using real-life contracts deployed in the Ethereum mainnet shows that on average, ContractGuard only adds to 36.14% of the deployment overhead and 28.27% of the runtime overhead. Furthermore, we conducted controlled experiments and show that ContractGuard successfully guard against attacks on all real-world vulnerabilities and 83% of the seeded vulnerabilities.
In this paper we discuss how conventional business contracts can be converted into smart contracts---their electronic equivalents that can be used to systematically monitor and enforce contractual rights, obligations and prohibitions at run time. We explain that emerging blockchain technology is certainly a promising platform for implementing smart contracts but argue that there is a large class of applications, where blockchain is inadequate due to performance, scalability, and consistency requirements, and also due to language expressiveness and cost issues that are hard to solve. We explain that in some situations a centralised approach that does not rely on blockchain is a better alternative due to its simplicity, scalability, and performance. We suggest that in applications where decentralisation and transparency are essential, developers can advantageously combine the two approaches into hybrid solutions where some operations are enforced by enforcers deployed on--blockchains and the rest by enforcers deployed on trusted third parties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا