Do you want to publish a course? Click here

An Infeasible-Start Framework for Convex Quadratic Optimization, with Application to Constraint-Reduced Interior-Point Methods

368   0   0.0 ( 0 )
 Added by Ming Tse Paul Laiu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A framework is proposed for solving general convex quadratic programs (CQPs) from an infeasible starting point by invoking an existing feasible-start algorithm tailored for inequality-constrained CQPs. The central tool is an exact penalty function scheme equipped with a penalty-parameter updating rule. The feasible-start algorithm merely has to satisfy certain general requirements, and so is the updating rule. Under mild assumptions, the framework is proved to converge on CQPs with both inequality and equality constraints and, at a negligible additional cost per iteration, produces an infeasibility certificate, together with a feasible point for an (approximately) $ell_1$-least relaxed feasible problem when the given problem does not have a feasible solution. The framework is applied to a feasible-start constraint-reduced interior-point algorithm previously proved to be highly performant on problems with many more constraints than variables (imbalanced). Numerical comparison with popular codes (SDPT3, SeDuMi, MOSEK) is reported on both randomly generated problems and support-vector machine classifier training problems. The results show that the former typically outperforms the latter on imbalanced problems.



rate research

Read More

A constraint-reduced Mehrotra-Predictor-Corrector algorithm for convex quadratic programming is proposed. (At each iteration, such algorithms use only a subset of the inequality constraints in constructing the search direction, resulting in CPU savings.) The proposed algorithm makes use of a regularization scheme to cater to cases where the reduced constraint matrix is rank deficient. Global and local convergence properties are established under arbitrary working-set selection rules subject to satisfaction of a general condition. A modified active-set identification scheme that fulfills this condition is introduced. Numerical tests show great promise for the proposed algorithm, in particular for its active-set identification scheme. While the focus of the present paper is on dense systems, application of the main ideas to large sparse systems is briefly discussed.
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $tilde O(varepsilon^{-5/2})$ to produce an $varepsilon$-stationary point under the Slaters condition. When the constraint functions are non-convex, the complexity becomes $tilde O(varepsilon^{-3})$ if a non-singularity condition holds on constraints and otherwise $tilde O(varepsilon^{-4})$ if a feasible initial solution is available.
Bi-level optimization model is able to capture a wide range of complex learning tasks with practical interest. Due to the witnessed efficiency in solving bi-level programs, gradient-based methods have gained popularity in the machine learning community. In this work, we propose a new gradient-based solution scheme, namely, the Bi-level Value-Function-based Interior-point Method (BVFIM). Following the main idea of the log-barrier interior-point scheme, we penalize the regularized value function of the lower level problem into the upper level objective. By further solving a sequence of differentiable unconstrained approximation problems, we consequently derive a sequential programming scheme. The numerical advantage of our scheme relies on the fact that, when gradient methods are applied to solve the approximation problem, we successfully avoid computing any expensive Hessian-vector or Jacobian-vector product. We prove the convergence without requiring any convexity assumption on either the upper level or the lower level objective. Experiments demonstrate the efficiency of the proposed BVFIM on non-convex bi-level problems.
We consider the nonsmooth convex composition optimization problem where the objective is a composition of two finite-sum functions and analyze stochastic compositional variance reduced gradient (SCVRG) methods for them. SCVRG and its variants have recently drawn much attention given their edge over stochastic compositional gradient descent (SCGD); but the theoretical analysis exclusively assumes strong convexity of the objective, which excludes several important examples such as Lasso, logistic regression, principle component analysis and deep neural nets. In contrast, we prove non-asymptotic incremental first-order oracle (IFO) complexity of SCVRG or its novel variants for nonsmooth convex composition optimization and show that they are provably faster than SCGD and gradient descent. More specifically, our method achieves the total IFO complexity of $Oleft((m+n)logleft(1/epsilonright)+1/epsilon^3right)$ which improves that of $Oleft(1/epsilon^{3.5}right)$ and $Oleft((m+n)/sqrt{epsilon}right)$ obtained by SCGD and accelerated gradient descent (AGD) respectively. Experimental results confirm that our methods outperform several existing methods, e.g., SCGD and AGD, on sparse mean-variance optimization problem.
Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoretical convergence guarantees for non-convex unconstrained problems, it remains a challenge to design provably efficient algorithms for problems with non-convex functional constraints. This paper proposes a class of subgradient methods for constrained optimization where the objective function and the constraint functions are are weakly convex. Our methods solve a sequence of strongly convex subproblems, where a proximal term is added to both the objective function and each constraint function. Each subproblem can be solved by various algorithms for strongly convex optimization. Under a uniform Slaters condition, we establish the computation complexities of our methods for finding a nearly stationary point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا