We have shown (Colin et al., 2019) that the acceleration of the Hubble expansion rate inferred from Type Ia supernovae (SNe Ia) is, at $3.9sigma$ significance, a dipole approximately aligned with the CMB dipole, while its monopole component, which can be interpreted as due to a Cosmological Constant or dark energy, is consistent with zero at $1.4sigma$. This has been challenged by Rubin & Heitlauf (2019) who assert that the dipole arises because we made an incorrect assumption about the SNe Ia light-curve parameters (viz. took them to be sample- and redshift independent), and did not allow for the motion of the Solar system (w.r.t. the CMB frame in which the CMB dipole supposedly vanishes). In fact what has an even larger impact on our finding is that we reversed the inconsistent corrections made for the peculiar velocities of the SNe Ia host galaxies w.r.t the CMB frame, which in fact serve to bias the lever arm of the Hubble diagram towards higher inferred values of the monopole. We demonstrate that even if all such corrections are made consistently and both sample- and redshift-dependence is allowed for in the standardisation of supernova light curves, the evidence for isotropic acceleration rises to just $2.8,sigma$. Thus the criticism of Rubin & Heitlauf serves only to highlight that corrections must be made to the SNe Ia data assuming the standard $Lambda$CDM model, in order to recover it from the data.