No Arabic abstract
We investigate effective equations governing the volume expansion of spatially averaged portions of inhomogeneous cosmologies in spacetimes filled with an arbitrary fluid. This work is a follow-up to previous studies focused on irrotational dust models (Paper I) and irrotational perfect fluids (Paper II) in flow-orthogonal foliations of spacetime. It complements them by considering arbitrary foliations, arbitrary lapse and shift, and by allowing for a tilted fluid flow with vorticity. As for the first studies, the propagation of the spatial averaging domain is chosen to follow the congruence of the fluid, which avoids unphysical dependencies in the averaged system that is obtained. We present two different averaging schemes and corresponding systems of averaged evolution equations providing generalizations of Papers I and II. The first one retains the averaging operator used in several other generalizations found in the literature. We extensively discuss relations to these formalisms and pinpoint limitations, in particular regarding rest mass conservation on the averaging domain. The alternative averaging scheme that we subsequently introduce follows the spirit of Papers I and II and focuses on the fluid flow and the associated 1+3 threading congruence, used jointly with the 3+1 foliation that builds the surfaces of averaging. This results in compact averaged equations with a minimal number of cosmological backreaction terms. We highlight that this system becomes especially transparent when applied to a natural class of foliations which have constant fluid proper time slices.
Using the Geroch transformation we obtain the first example of an exact stiff fluid spike solution to the Einstein field equations in a closed form exhibiting a spacelike $G_1$ group of symmetries (i.e., with a single isometry). This new solution is of Petrov type I and exhibits a spike crossing which persists to the past, which allows us to better understand spike crossings in the context of structure formation.
We study general dynamical equations describing homogeneous isotropic cosmologies coupled to a scalaron $psi$. For flat cosmologies ($k=0$), we analyze in detail the gauge-independent equation describing the differential, $chi(alpha)equivpsi^prime(alpha)$, of the map of the metric $alpha$ to the scalaron field $psi$, which is the main mathematical characteristic locally defining a `portrait of a cosmology in `$alpha$-version. In the `$psi$-version, a similar equation for the differential of the inverse map, $bar{chi}(psi)equiv chi^{-1}(alpha)$, can be solved asymptotically or for some `integrable scalaron potentials $v(psi)$. In the flat case, $bar{chi}(psi)$ and $chi(alpha)$ satisfy the first-order differential equations depending only on the logarithmic derivative of the potential. Once we know a general analytic solution for one of these $chi$-functions, we can explicitly derive all characteristics of the cosmological model. In the $alpha$-version, the whole dynamical system is integrable for $k eq 0$ and with any `$alpha$-potential, $bar{v}(alpha)equiv v[psi(alpha)]$, replacing $v(psi)$. There is no a priori relation between the two potentials before deriving $chi$ or $bar{chi}$, which implicitly depend on the potential itself, but relations between the two pictures can be found by asymptotic expansions or by inflationary perturbation theory. Explicit applications of the results to a more rigorous treatment of the chaotic inflation models and to their comparison with the ekpyrotic-bouncing ones are outlined in the frame of our `$alpha$-formulation of isotropic scalaron cosmologies. In particular, we establish an inflationary perturbation expansion for $chi$. When all the conditions for inflation are satisfied and $chi$ obeys a certain boundary (initial) condition, we get the standard inflationary parameters, with higher-order corrections.
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evolution of black hole binary systems, providing a qualitative physical interpretation of each one of them. I will also briefly describe how these phases would be modified if gravitation were described by a theory extending or deforming General Relativity, or if the binary components turned out to be more exotic compact objects than black holes.
We study a static, spherically symmetric wormhole model whose metric coincides with that of the so-called Ellis wormhole but the material source of gravity consists of a perfect fluid with negative density and a source-free radial electric or magnetic field. For a certain class of fluid equations of state, it has been shown that this wormhole model is linearly stable under both spherically symmetric perturbations and axial perturbations of arbitrary multipolarity. A similar behavior is predicted for polar nonspherical perturbations. It thus seems to be the first example of a stable wormhole model in the framework of general relativity (at least without invoking phantom thin shells as wormhole sources).
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.