No Arabic abstract
Plutonium (Pu), in which the 5$f$ valence electrons always wander the boundary between localized and itinerant states, exhibits quite complex crystal structures and unprecedentedly anomalous properties with respect to temperature and alloying. Understanding its chemical and physical properties, especially its 5$f$ electronic structure is one of the central and unsolved topics in condensed matter theory. In the present work, the electronic structures of the six allotropes of Pu (including its $alpha$, $beta$, $gamma$, $delta$, $delta$, and $epsilon$ phases) at ambient pressure are studied comprehensively by means of the density functional theory in combination with the single-site dynamical mean-field theory. The band structures, total and partial density of states, valence state histograms, 5$f$ orbital occupancies, X-ray branching ratios, and self-energy functions are carefully studied. It is suggested that the $alpha$, $beta$, and $gamma$ phases of Pu are typical Racah metals in which the atomic multiple effect dominates near the Fermi level. The calculated results reveal that not only the $delta$ phase, but also all the six allotropes are archetypal mixed-valence metals with remarkable atomic eigenstate fluctuation. In consequence of that, the 5$f$ occupancy $n_{5f}$ is around 5.1 $sim$ 5.4, which varies with respect to the atomic volume and electronic correlation strength of Pu. The 5$f$ electronic correlation in Pu is moderately orbital-dependent. Moreover, the 5$f$ electrons in the $delta$ phase are the most correlated and localized.
Ab-initio relativistic dynamical mean-field theory is applied to resolve the long-standing controversy between theory and experiment in the simple face-centered cubic phase of plutonium called delta-Pu. In agreement with experiment, neither static nor dynamical magnetic moments are predicted. In addition, the quasiparticle density of states reproduces not only the peak close to the Fermi level, which explains the large coefficient of electronic specific heat, but also main 5f features observed in photoelectron spectroscopy.
We have measured the heat capacities of $delta-$Pu$_{0.95}$Al$_{0.05}$ and $alpha-$Pu over the temperature range 2-303 K. The availability of data below 10 K plus an estimate of the phonon contribution to the heat capacity based on recent neutron-scattering experiments on the same sample enable us to make a reliable deduction of the electronic contribution to the heat capacity of $delta-$Pu$_{0.95}$Al$_{0.05}$; we find $gamma = 64 pm 3$ mJK$^{-2}$mol$^{-1}$ as $T to 0$. This is a factor $sim 4$ larger than that of any element, and large enough for $delta-$Pu$_{0.95}$Al$_{0.05}$ to be classed as a heavy-fermion system. By contrast, $gamma = 17 pm 1$ mJK$^{-2}$mol$^{-1}$ in $alpha-$Pu. Two distinct anomalies are seen in the electronic contribution to the heat capacity of $delta-$Pu$_{0.95}$Al$_{0.05}$, one or both of which may be associated with the formation of the $alpha-$ martensitic phase. We suggest that the large $gamma$-value of $delta-$Pu$_{0.95}$Al$_{0.05}$ may be caused by proximity to a quantum-critical point.
Kagome superconductors with Tc up to 7K have been discovered over 40 years. Recently, unconventional chiral charge order has been reported in kagome superconductor KV3Sb5, with an ordering temperature of one order of magnitude higher than the TC. However, the chirality of the charge order has not been reported in the cousin kagome superconductor CsV3Sb5, and the electronic nature of the chirality remains elusive. In this letter, we report the observation of electronic chiral charge order in CsV3Sb5 via scanning tunneling microscopy (STM). We observe a 2x2 charge modulation and a 1x4 superlattice in both topographic data and tunneling spectroscopy. 2x2 charge modulation is highly anticipated as a charge order by fundamental kagome lattice models at van Hove filling, and is shown to exhibit intrinsic chirality. We find that the 1x4 superlattices forms various small domain walls, and can be a surface effect as supported by our first-principles calculations. Crucially, we find that the amplitude of the energy gap opened by the charge order exhibits real space modulations, and features 2x2 wave vectors with chirality, highlighting the electronic nature of the chiral charge order. STM study at 0.4K reveals a superconducting energy gap with a gap size 2{Delta}=0.85meV, which estimates a moderate superconductivity coupling strength with 2{Delta}/kBTc=3.9. When further applying a c-axis magnetic field, vortex core bound states are observed within this gap, indicative of clean-limit superconductivity.
We present a theoretical model of the electronic structure of delta-Pu that is consistent with many of the electronic structure related properties of this complex metal. In particular we show that the theory is capable of reproducing the valence band photoelectron spectrum of delta-Pu. We report new experimental photoelectron spectra at several photon energies and present evidence that the electronic structure of delta-Pu is unique among the elements, involving a 5f shell with four 5f electrons in a localized multiplet, hybridizing with valence states, and approximately one 5f electron forming a completely delocalized band state.
Recently, rutile RuO$_2$ has raised interest for its itinerant antiferromagnetism, crystal Hall effect, and strain-induced superconductivity. Understanding and manipulating these properties demands resolving the electronic structure and the relative roles of the rutile crystal field and $4d$ spin-orbit coupling (SOC). Here, we use O-K and Ru $M_3$ x-ray absorption (XAS) and Ru $M_3$ resonant inelastic x-ray scattering (RIXS) to disentangle the contributions of crystal field, SOC, and electronic correlations in RuO$_2$. The locally orthorhombic site symmetry of the Ru ions introduces significant crystal field contributions beyond the approximate octahedral coordination yielding a crystal field energy scale of $Delta(t_{2g})approx 1$ eV breaking the degeneracy of the $t_{2g}$ orbitals. This splitting exceeds the Ru SOC ($approx160$ meV) suggesting a more subtle role of SOC, primarily through the modification of itinerant (rather than local) $4d$ electronic states, ultimately highlighting the importance of the local symmetry in RuO$_2$. Remarkably, our analysis can be extended to other members of the rutile family, thus advancing the comprehension of the interplay among crystal field symmetry, electron correlations, and SOC in transition metal compounds with the rutile structure.