The Emergence of Unconventional Plasmons Driven by Correlated Electron Interaction in B-site of 2D Hybrid Organic-Inorganic Perovskites


Abstract in English

Hybrid organic-inorganic perovskites (HOIPs) have emerged to the forefront of optoelectronic materials advancement in the past few years. Due to the nature of organic compounds within the perovskite structure, its optoelectronic properties are affected by complex interaction and correlation effects between the organic and inorganic ions. Using spectroscopic ellipsometry, we observe two broad plasmonic excitation from the calculated loss function (LF) -Im[varepislon^{-1} (omega)], peak A and B at 3.28 eV and 4.26 eV, respectively.The presence of these two asymmetric peaks in the spectroscopic ellipsometry (SE) spectra indicates the existence of unconventional plasmons at room temperature. This is inferred due to the absence of the zero-crossing in the real part of dielectric function varepsilon_1 (omega). Through combined Near-Edge X-ray Absorption Fine Structure (NEXAFS) and Resonant Photoemission Spectroscopies (ResPES), we observe resonance enhancement peak close to 15 eV in the C K-edge region that unravels a charge transfer event due to the opening of an extra autoionization channel. Additionally, photoluminescence (PL) spectrum confirms the presence of broadband emission originating from the self-trapped emission excitons at 2.38 eV due to the soft 2D-HOIPs crystal structure. We believe that these phenomena directly impact the correlation strength in 2D-HOIPs. Our results have confirmed the existence of unconventional plasmons of 2D-HOIPs at room temperature. Such studies in the emission and plasmonic behavior of perovskites will pave the way for the efficient light emitting devices or lasers with minimal integrations of the materials.

Download