Approximating the Determinant of Well-Conditioned Matrices by Shallow Circuits


Abstract in English

The determinant can be computed by classical circuits of depth $O(log^2 n)$, and therefore it can also be computed in classical space $O(log^2 n)$. Recent progress by Ta-Shma [Ta13] implies a method to approximate the determinant of Hermitian matrices with condition number $kappa$ in quantum space $O(log n + log kappa)$. However, it is not known how to perform the task in less than $O(log^2 n)$ space using classical resources only. In this work, we show that the condition number of a matrix implies an upper bound on the depth complexity (and therefore also on the space complexity) for this task: the determinant of Hermitian matrices with condition number $kappa$ can be approximated to inverse polynomial relative error with classical circuits of depth $tilde O(log n cdot log kappa)$, and in particular one can approximate the determinant for sufficiently well-conditioned matrices in depth $tilde{O}(log n)$. Our algorithm combines Barvinoks recent complex-analytic approach for approximating combinatorial counting problems [Bar16] with the Valiant-Berkowitz-Skyum-Rackoff depth-reduction theorem for low-degree arithmetic circuits [Val83].

Download