Reconfigurable Intelligent Surface-Based Wireless Communication: Antenna Design, Prototyping and Experimental Results


Abstract in English

One of the key enablers of future wireless communications is constituted by massive multiple-input multiple-output (MIMO) systems, which can improve the spectral efficiency by orders of magnitude. However, in existing massive MIMO systems, conventional phased arrays are used for beamforming, which result in excessive power consumption and hardware cost. Recently, reconfigurable intelligent surface (RIS) has been considered as one of the revolutionary technologies to enable energy-efficient and smart wireless communications, which is a two-dimensional structure with a large number of passive elements. In this paper, we propose and develop a new type of high-gain yet low-cost RIS having 256 elements. The proposed RIS combines the functions of phase shift and radiation together on an electromagnetic surface, where positive intrinsic-negative (PIN) diodes are used to realize 2-bit phase shifting for beamforming. Based on this radical design, the worlds first wireless communication prototype using RIS having 256 2-bit elements is designed and developed. Specifically, the prototype conceived consists of modular hardware and flexible software, including the hosts for parameter setting and data exchange, the universal software radio peripherals (USRPs) for baseband and radio frequency (RF) signal processing, as well as the RIS for signal transmission and reception. Our performance evaluation confirms the feasibility and efficiency of RISs in future wireless communications. More particularly, it is shown that a 21.7 dBi antenna gain can be obtained by the proposed RIS at 2.3 GHz, while at the millimeter wave (mmWave) frequency, i.e., 28.5 GHz, a 19.1 dBi antenna gain can be achieved. Furthermore, the over-the-air (OTA) test results show that the RIS-based wireless communication prototype developed is capable of significantly reducing the power consumption.

Download