Increasing performance of electric vehicles in ride-hailing services using deep reinforcement learning


Abstract in English

New forms of on-demand transportation such as ride-hailing and connected autonomous vehicles are proliferating, yet are a challenging use case for electric vehicles (EV). This paper explores the feasibility of using deep reinforcement learning (DRL) to optimize a driving and charging policy for a ride-hailing EV agent, with the goal of reducing costs and emissions while increasing transportation service provided. We introduce a data-driven simulation of a ride-hailing EV agent that provides transportation service and charges energy at congested charging infrastructure. We then formulate a test case for the sequential driving and charging decision making problem of the agent and apply DRL to optimize the agents decision making policy. We evaluate the performance against hand-written policies and show that our agent learns to act competitively without any prior knowledge.

Download