Do you want to publish a course? Click here

Linear Complementary Pair Of Group Codes over Finite Chain Rings

82   0   0.0 ( 0 )
 Added by Edgar Martinez-Moro
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Linear complementary dual (LCD) codes and linear complementary pair (LCP) of codes over finite fields have been intensively studied recently due to their applications in cryptography, in the context of side-channel and fault injection attacks. The security parameter for an LCP of codes $(C,D)$ is defined as the minimum of the minimum distances $d(C)$ and $d(D^bot)$. It has been recently shown that if $C$ and $D$ are both 2-sided group codes over a finite field, then $C$ and $D^bot$ are permutation equivalent. Hence the security parameter for an LCP of 2-sided group codes $(C,D)$ is simply $d(C)$. We extend this result to 2-sided group codes over finite chain rings.



rate research

Read More

Given $texttt{S}|texttt{R}$ a finite Galois extension of finite chain rings and $mathcal{B}$ an $texttt{S}$-linear code we define two Galois operators, the closure operator and the interior operator. We proof that a linear code is Galois invariant if and only if the row standard form of its generator matrix has all entries in the fixed ring by the Galois group and show a Galois correspondence in the class of $texttt{S}$-linear codes. As applications some improvements of upper and lower bounds for the rank of the restriction and trace code are given and some applications to $texttt{S}$-linear cyclic codes are shown.
A structure theorem of the group codes which are relative projective for the subgroup $lbrace 1 rbrace$ of $G$ is given. With this, we show that all such relative projective group codes in a fixed group algebra $RG$ are in bijection to the chains of projective group codes of length $ell$ in the group algebra $mathbb{F}G$, where $mathbb{F}$ is the residue field of $R$. We use a given chain to construct the dual code in $RG$ and also derive the minimum Hamming weight as well as a lower bound of the minimum euclidean weight.
In this paper we give the generalization of lifted codes over any finite chain ring. This has been done by using the construction of finite chain rings from $p$-adic fields. Further we propose a lattice construction from linear codes over finite chain rings using lifted codes.
Galois images of polycyclic codes over a finite chain ring $S$ and their annihilator dual are investigated. The case when a polycyclic codes is Galois-disjoint over the ring $S,$ is characterized and, the trace codes and restrictions of free polycyclic codes over $S$ are also determined givind an analogue of Delsarte theorem among trace map, any S -linear code and its annihilator dual.
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD code over finite commutative Frobenius rings. We later show that a free constacyclic code over finite chain ring is LCD if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible over finite chain rings. We illustrate the minimum Lee-distance of LCD codes over some finite commutative chain rings and demonstrate the results with examples. We also got some new optimal $mathbb{Z}_4$ codes of different lengths {which are} cyclic LCD codes over $mathbb{Z}_4$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا