Do you want to publish a course? Click here

Hyperuniform monocrystalline structures by spinodal solid-state dewetting

197   0   0.0 ( 0 )
 Added by Marco Salvalaglio
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Materials featuring anomalous suppression of density fluctuations over large length scales are emerging systems known as disordered hyperuniform. The underlying hidden order renders them appealing for several applications, such as light management and topologically protected electronic states. These applications require scalable fabrication, which is hard to achieve with available top-down approaches. Theoretically, it is known that spinodal decomposition can lead to disordered hyperuniform architectures. Spontaneous formation of stable patterns could thus be a viable path for the bottom-up fabrication of these materials. Here we show that mono-crystalline semiconductor-based structures, in particular Si$_{1-x}$Ge$_{x}$ layers deposited on silicon-on-insulator substrates, can undergo spinodal solid-state dewetting featuring correlated disorder with an effective hyperuniform character. Nano- to micro-metric sized structures targeting specific morphologies and hyperuniform character can be obtained, proving the generality of the approach and paving the way for technological applications of disordered hyperuniform metamaterials. Phase-field simulations explain the underlying non-linear dynamics and the physical origin of the emerging patterns.

rate research

Read More

69 - M. Berni , I. Carrano , A. Kovtun 2020
Solid-state dewetting phenomenon in silver thin films offers a straightforward method to obtain structures having controlled shape or size -this latter in principle spanning several orders of magnitudes -- with potentially strong interest in many applications involving high-tech industry and biomedicine. In this work nanostructured silver is deposited by pulsed electron ablation technique and its surface modified upon thermal treatments in air at increasing temperatures. Surface chemistry and morphology are then monitored simultaneously by X-ray photoemission spectroscopy and atomic force microscopy; in particular, the power spectral density of surface heights is used to analyze the alteration of morphology induced by annealing. It is shown that this approach adds a level of information about the dewetting process since it allows to separate between long- and short-range surface behavior and to retrieve statistical quantities relevant to a description of the features in view of applications. Our results are presented in the framework of a multidisciplinary approach, advantages and limits of which are deepened and discussed.
Experiments on dewetting thin polymer films confirm the theoretical prediction that thermal noise can strongly influence characteristic time-scales of fluid flow and cause coarsening of typical length scales. Comparing the experiments with deterministic simulations, we show that the Navier-Stokes equation has to be extended by a conserved bulk noise term to accomplish the observed spectrum of capillary waves. Due to thermal fluctuations the spectrum changes from an exponential to a power law decay for large wavevectors. Also the time evolution of the typical wavevector of unstable perturbations exhibits noise induced coarsening that is absent in deterministic hydrodynamic flow.
141 - M. Szot , P. Pfeffer , K. Dybko 2019
High quality p-type PbTe-CdTe monocrystalline alloys containing up to 10 at.$%$ of Cd are obtained by self-selecting vapor transport method. Mid infrared photoluminescence experiments are performed to follow the variation of the fundamental energy gap as a function of Cd content. The Hall mobility, thermoelectric power, thermal conductivity and thermoelectric figure of merit parameter $ZT$ are investigated experimentally and theoretically paying particular attention to the two-valence band structure of the material. It is shown that the heavy-hole band near the $Sigma$ point of the Brillouin zone plays an important role and is responsible for the Pb$_{1-x}$Cd$_x$Te hole transport at higher Cd-content. Our data and their description can serve as the standard for Pb$_{1-x}$Cd$_x$Te single crystals with $x$ up to 0.1. It is shown, that monocrystalline Pb$_{1-x}$Cd$_x$Te samples with relatively low Cd content of about 1 at.% and hole concentration of the order of 10$^{20}$ cm$^{-3}$ may exhibit $ZT approx$ 1.4 at 600 K.
152 - Darren H. S. Tan 2021
The development of silicon anodes to replace conventional graphite in efforts to increase energy densities of lithium-ion batteries has been largely impeded by poor interfacial stability against liquid electrolytes. Here, stable operation of 99.9 weight% micro-Si (uSi) anode is enabled by utilizing the interface passivating properties of sulfide based solid-electrolytes. Bulk to surface characterization, as well as quantification of interfacial components showed that such an approach eliminates continuous interfacial growth and irreversible lithium losses. In uSi || layered-oxide full cells, high current densities at room temperature (5 mA cm 2), wide operating temperature (-20{deg}C to 80{deg}C) and high loadings (>11 mAh cm-2) were demonstrated for both charge and discharge operations. The promising battery performance can be attributed to both the desirable interfacial property between uSi and sulfide electrolytes, as well as the unique chemo-mechanical behavior of the Li-Si alloys.
Poly(vinylidene fluoride) (PVDF) has long been regarded as an ideal piezoelectric plastic because it exhibits a large piezoelectric response and a high thermal stability. However, the realization of piezoelectric PVDF elements has proven to be problematic, amongst others, due to the lack of industrially-scalable methods to process PVDF into the appropriate polar crystalline forms. Here, we show that fully piezoelectric PVDF films can be produced via a single-step process that exploits the fact that PVDF can be molded at temperatures below its melting temperature, i.e. via solid-state-processing. We demonstrate that we thereby produce d_PVDF, the piezoelectric charge coefficient of which is comparable to that of biaxially stretched d_PVDF. We expect that the simplicity and scalability of solid-state processing combined with the excellent piezoelectric properties of our PVDF structures will provide new opportunities for this commodity polymer and will open a range of possibilities for future, large-scale, industrial production of plastic piezoelectric films
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا