Risk-Aware MMSE Estimation


Abstract in English

Despite the simplicity and intuitive interpretation of Minimum Mean Squared Error (MMSE) estimators, their effectiveness in certain scenarios is questionable. Indeed, minimizing squared errors on average does not provide any form of stability, as the volatility of the estimation error is left unconstrained. When this volatility is statistically significant, the difference between the average and realized performance of the MMSE estimator can be drastically different. To address this issue, we introduce a new risk-aware MMSE formulation which trades between mean performance and risk by explicitly constraining the expected predictive variance of the involved squared error. We show that, under mild moment boundedness conditions, the corresponding risk-aware optimal solution can be evaluated explicitly, and has the form of an appropriately biased nonlinear MMSE estimator. We further illustrate the effectiveness of our approach via several numerical examples, which also showcase the advantages of risk-aware MMSE estimation against risk-neutral MMSE estimation, especially in models involving skewed, heavy-tailed distributions.

Download