Do you want to publish a course? Click here

Experimental observation of internally-pumped parametric oscillation and quadratic comb generation in a $chi^{(2)}$ whispering-gallery-mode microresonator

260   0   0.0 ( 0 )
 Added by Miro Erkintalo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the experimental observation of internally-pumped parametric oscillation in a high-Q lithium niobate microresonator under conditions of natural phase-matching. Specifically, launching near-infrared pump light around 1060 nm into a $z$-cut congruent lithium niobate microresonator, we observe the generation of optical sidebands around the input pump under conditions where second-harmonic generation is close to natural phase-matching. We find that a wide range of different sideband frequency shifts can be generated by varying the experimental parameters. Under particular conditions, we observe the cascaded generation of several equally-spaced sidebands around the pump -- the first steps of optical frequency comb generation via cavity-enhanced second-harmonic generation.



rate research

Read More

Whispering gallery mode (WGM) microresonators, benefitting from the ultrahigh quality (Q) factors and small mode volumes, could considerably enhance the light-matter interaction, making it an ideal platform for studying a broad range of nonlinear optical effects. In this review, the progress of optical nonlinear effects in WGM microresonators is comprehensively summarized. First, several basic nonlinear effects in WGM microresonator are reviewed, including not only Pockels effect and Kerr effect, but also harmonic generations, four-wave mixing and stimulated optical scattering effects. Apart from that, nonlinearity induced by thermal effect and in PT-symmetric systems are also discussed. Furthermore, multistep nonlinear optical effects by cascading several nonlinear effects are reviewed, including frequency comb generations. Several selected applications of optical nonlinearity in WGM resonators are finally introduced, such as narrow-linewidth microlasers, nonlinearity induced non-reciprocity and frequency combs.
We have experimentally demonstrated an on-chip all-silk fibroin whispering gallery mode microresonator by using a simple molding and solution-casting technique. The quality factors of the fabricated silk protein microresonators are up to 10^5. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with sensitivity of 1.17 nm/K, 8 times higher than previous WGM resonator based thermal sensors. This opens the way to fabricate biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications.
We develop a compact whispering-gallery-mode (WGM) sensing system by integrating multiple components, including a tunable laser, a temperature controller, a function generator, an oscilloscope, a photodiode detector, and a testing computer, into a phone-sized embedded system. We demonstrate a thermal sensing experiment by using this portable system. Such a system successfully eliminates bulky measurement equipment required for characterizing optical resonators and will open up new avenues for practical sensing applications by using ultra-high Q WGM resonators.
111 - Xiaoxiao Xue , Xiaoping Zheng , 2017
A shaped doublet pump pulse is proposed for simultaneous octave-spanning soliton Kerr frequency comb generation and second-harmonic conversion in a single microresonator. The temporal soliton in the cavity is trapped atop a doublet pulse pedestal, resulting in a greatly expanded soliton region compared to that with a general Gaussian pulse pump. The possibility of single-microresonator comb self-referencing in a single silicon nitride microring, which can facilitate compact on-chip optical clocks, is demonstrated via simulation.
We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا