Do you want to publish a course? Click here

Enhanced spin-orbit coupling in a heavy metal via molecular coupling

98   0   0.0 ( 0 )
 Added by Oscar Cespedes
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Heavy metals are key to spintronics because of their high spin-orbit coupling (SOC) leading to efficient spin conversion and strong magnetic interactions. When C60 is deposited on Pt, the molecular interface is metallised and the spin Hall angle in YIG/Pt increased, leading to an enhancement of up to 600% in the spin Hall magnetoresistance and 700% for the anisotropic magnetoresistance. This correlates with Density Functional Theory simulations showing changes of 0.46 eV/C60 in the SOC of Pt. This effect opens the possibility of gating the molecular hybridisation and SOC of metals.



rate research

Read More

158 - Luis Brey 2015
Many of the exotic properties proposed to occur in graphene rely on the possibility of increasing the spin orbit coupling (SOC). By combining analytical and numerical tight binding calculations, in this work we study the SOC induced by heavy adatoms with active electrons living in $p$ orbitals. Depending on the position of the adatoms on graphene different kinds of SOC appear. Adatoms located in hollow position induce spin conserving intrinsic like SOC whereas a random distribution of adatoms induces a spin flipping Rashba like SOC. The induced SOC is linearly proportional to the adatoms concentration, indicating the inexistent interference effects between different adatoms. By computing the Hall conductivity we have proved the stability of the topological quantum Hall phases created by the adatoms against inhomogeneous spin orbit coupling . For the case of Pb adatoms, we find that a concentration of 0.1 adatom per carbon atom generates SOCs of the order of $sim$40$meV$.
The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin currents absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the SOTs in HM/FM/Ru multilayers. While the FM thickness is smaller than its spin dephasing length of 1.2 nm, the top Ru layer largely boosts the absorption of spin currents into the FM layer and substantially enhances the strength of SOT acting on the FM. Spin-pumping experiments induced by ferromagnetic resonance support our conclusions that the observed increase in the SOT efficiency can be attributed to an enhancement of the spin-current absorption. A theoretical model that considers both reflected and transmitted mixing conductances at the two interfaces of FM is developed to explain the results.
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driven effects of the electronic bands, magnetism, and spin-orbit entanglement for those materials with a large SOC. However, it is less studied and remains an unsolved problem in how the SOC affects the lattice dynamics. We, therefore, measured the phonon spectra of 5d pyrochlore Cd2Os2O7 over the full Brillouin zone to address the question by using inelastic x-ray scattering (IXS). Our main finding is a visible mode-dependence in the phonon spectra, measured across the metal-insulator transition at 227 K. We examined the SOC strength dependence of the lattice dynamics and its spin-phonon (SP) coupling, with first-principle calculations. Our experimental data taken at 100 K are in good agreement with the theoretical results obtained with the optimized U = 2.0 eV with SOC. By scaling the SOC strength and the U value in the DFT calculations, we demonstrate that SOC is more relevant than U to explaining the observed mode-dependent phonon energy shifts with temperature. Furthermore, the temperature dependence of the phonon energy can be effectively described by scaling SOC. Our work provides clear evidence of SOC producing a non-negligible and essential effect on the lattice dynamics of Cd2Os2O7 and its SP coupling.
The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven diffi- cult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g -shifts to spin-lattice relaxation times over four orders of magnitude, from 200 {mu}s to 0.15 {mu}s, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.
We combine top-down and bottom-up nanolithography to optimize the coupling of small molecular spin ensembles to $1.4$ GHz on-chip superconducting resonators. Nanoscopic constrictions, fabricated with a focused ion beam at the central transmission line, locally concentrate the microwave magnetic field. Drops of free-radical molecules have been deposited from solution onto the circuits. For the smallest ones, the molecules were delivered at the relevant circuit areas by means of an atomic force microscope. The number of spins $N_{rm eff}$ effectively coupled to each device was accurately determined combining Scanning Electron and Atomic Force Microscopies. The collective spin-photon coupling constant has been determined for samples with $N_{rm eff}$ ranging between $2 times 10^{6}$ and $10^{12}$ spins, and for temperatures down to $44$ mK. The results show the well-known collective enhancement of the coupling proportional to the square root of $N_{rm eff}$. The average coupling of individual spins is enhanced by more than four orders of magnitude (from $4$ mHz up to above $180$ Hz) when the transmission line width is reduced from $400$ microns down to $42$ nm, and reaches maximum values near $1$ kHz for molecules located on the smallest nanoconstrictions. This result opens promising avenues for the realization of magnetic spectroscopy experiments at the nanoscale and for the development of hybrid quantum computation architectures based on molecular spin qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا