Do you want to publish a course? Click here

On Resolving Singularities of Plane Curves via a Theorem attributed to Clebsch

84   0   0.0 ( 0 )
 Added by David E Rowe
 Publication date 2019
  fields
and research's language is English
 Authors David E. Rowe




Ask ChatGPT about the research

This paper discusses a central theorem in birational geometry first proved by Eugenio Bertini in 1891. J.L. Coolidge described the main ideas behind Bertinis proof, but he attributed the theorem to Clebsch. He did so owing to a short note that Felix Klein appended to the republication of Bertinis article in 1894. The precise circumstances that led to Kleins intervention can be easily reconstructed from letters Klein exchanged with Max Noether, who was then completing work on the lengthy report he and Alexander Brill published on the history of algebraic functions [Brill/Noether 1894]. This correspondence sheds new light on Noethers deep concerns about the importance of this report in substantiating his own priority rights and larger intellectual legacy.



rate research

Read More

We report on the problem of the existence of complex and real algebraic curves in the plane with prescribed singularities up to analytic and topological equivalence. The question is whether, for a given positive integer $d$ and a finite number of given analytic or topological singularity types, there exist a plane (irreducible) curve of degree $d$ having singular points of the given type as its only singularities. The set of all such curves is a quasi-projective variety, which we call an equisingular family (ESF). We describe, in terms of numerical invariants of the curves and their singularities, the state of the art concerning necessary and sufficient conditions for the non-emptiness and $T$-smoothness (i.e., smooth of expected dimension) of the corresponding ESF. The considered singularities can be arbitrary, but we spend special attention to plane curves with nodes and cusps, the most studied case, where still no complete answer is known in general. An important result is, however, that the necessary and the sufficient conditions show the same asymptotics for $T$-smooth equisingular families if the degree goes to infinity.
We enumerate complex curves on toric surfaces of any given degree and genus, having a single cusp and nodes as their singularities, and matching appropriately many point constraints. The solution is obtained via tropical enumerative geometry. The same technique applies to enumeration of real plane cuspidal curves: We show that, for any fixed $rge1$ and $dge2r+3$, there exists a generic real $2r$-dimensional linear family of plane curves of degree $d$ in which the number of real $r$-cuspidal curves is asymptotically comparable with the total number of complex $r$-cuspidal curves in the family, as $dtoinfty$.
A real morsification of a real plane curve singularity is a real deformation given by a family of real analytic functions having only real Morse critical points with all saddles on the zero level. We prove the existence of real morsifications for real plane curve singularities having arbitrary real local branches and pairs of complex conjugate branches satisfying some conditions. This was known before only in the case of all local branches being real (ACampo, Gusein-Zade). We also discuss a relation between real morsifications and the topology of singularities, extending to arbitrary real morsifications the Balke-Kaenders theorem, which states that the ACampo--Gusein-Zade diagram associated to a morsification uniquely determines the topological type of a singularity.
By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety $Y$. In the present paper we prove the same result in case $Y$ has isolated singularities.
We investigate degenerations of syzygy bundles on plane curves over $p$-adic fields. We use Mustafin varieties which are degenerations of projective spaces to find a large family of models of plane curves over the ring of integers such that the special fiber consists of multiple projective lines meeting in one point. On such models we investigate vector bundles whose generic fiber is a syzygy bundle and which become trivial when restricted to each projective line in the special fiber. Hence these syzygy bundles have strongly semistable reduction. This investigation is motivated by the fundamental open problem in $p$-adic Simpson theory to determine the category of Higgs bundles corresponding to continuous representations of the etale fundamental group of a curve. Faltings $p$-adic Simpson correspondence and work of Deninger and the second author shows that bundles with Higgs field zero and potentially strongly semistable reduction fall into this category. Hence the results in the present paper determine a class of syzygy bundles on plane curves giving rise to a $p$-adic local system. We apply our methods to a concrete example on the Fermat curve suggested by Brenner and prove that this bundle has potentially strongly semistable reduction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا