Supersensitive quantum sensor based on criticality in an antiferromagnetic spinor condensate


Abstract in English

We consider an antiferromagnetic Bose-Einstein condensate in a traverse magnetic field with a fixed macroscopic magnetization. The system exhibits two different critical behaviors corresponding to transitions from polar to broken-axisymmetry and from antiferromagnetic to broken-axisymmetry phases depending on the value of magnetization. We exploit both types of system criticality as a resource in the precise estimation of control parameter value. We quantify the achievable precision by the quantum Fisher information. We demonstrate supersensitivity and show that the precision scales with the number of atoms up to $N^4$ around critically. In addition, we study the precision based on the error-propagation formula providing the simple-to-measure signal which coincides its scaling with the quantum Fisher information. Finally, we take into account the effect of non-zero temperature and show that the sub-shot noise sensitivity in the estimation of the control parameter is achievable in the low-temperature limit.

Download