Understanding the physical processes in the solar wind and corona which actively contribute to heating, acceleration, and dissipation is a primary objective of NASAs Parker Solar Probe (PSP) mission. Observations of coherent electromagnetic waves at ion scales suggests that linear cyclotron resonance and non-linear processes are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of coherent waves in the first perihelion encounter of PSP demonstrates the presence of transverse electromagnetic waves at ion resonant scales which are observed in 30-50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is of order 20 seconds; however long duration wave events can exist without interruption on hour-long timescales. Though ion scale waves are preferentially observed during intervals with a radial mean magnetic field, we show that measurement constraints, associated with single spacecraft sampling of quasi-parallel waves superposed with anisotropic turbulence, render the measured quasi-parallel ion-wave spectrum unobservable when the mean magnetic field is oblique to the solar wind flow; these results imply that the occurrence of coherent ion-scale waves is not limited to a radial field configuration. The lack of strong radial scaling of characteristic wave amplitudes and duration suggests that the waves are generated {em{in-situ}} through plasma instabilities. Additionally, observations of proton distribution functions indicate that temperature anisotropy may drive the observed ion-scale waves.