The dynamics of a degenerate epidemic model with nonlocal diffusion and free boundaries


Abstract in English

We consider an epidemic model with nonlocal diffusion and free boundaries, which describes the evolution of an infectious agents with nonlocal diffusion and the infected humans without diffusion, where humans get infected by the agents, and infected humans in return contribute to the growth of the agents. The model can be viewed as a nonlocal version of the free boundary model studied by Ahn, Beak and Lin cite{ABL2016}, with its origin tracing back to Capasso et al. cite{CP1979, CM1981}. We prove that the problem has a unique solution defined for all $t>0$, and its long-time dynamical behaviour is governed by a spreading-vanishing dichotomy. Sharp criteria for spreading and vanishing are also obtained, which reveal significant differences from the local diffusion model in cite{ABL2016}. Depending on the choice of the kernel function in the nonlocal diffusion operator, it is expected that the nonlocal model here may have accelerated spreading, which would contrast sharply to the model of cite{ABL2016}, where the spreading has finite speed whenever spreading happens cite{ZLN2019}.

Download