No Arabic abstract
Classification and localization are two pillars of visual object detectors. However, in CNN-based detectors, these two modules are usually optimized under a fixed set of candidate (or anchor) bounding boxes. This configuration significantly limits the possibility to jointly optimize classification and localization. In this paper, we propose a Multiple Instance Learning (MIL) approach that selects anchors and jointly optimizes the two modules of a CNN-based object detector. Our approach, referred to as Multiple Anchor Learning (MAL), constructs anchor bags and selects the most representative anchors from each bag. Such an iterative selection process is potentially NP-hard to optimize. To address this issue, we solve MAL by repetitively depressing the confidence of selected anchors by perturbing their corresponding features. In an adversarial selection-depression manner, MAL not only pursues optimal solutions but also fully leverages multiple anchors/features to learn a detection model. Experiments show that MAL improves the baseline RetinaNet with significant margins on the commonly used MS-COCO object detection benchmark and achieves new state-of-the-art detection performance compared with recent methods.
Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes, then Intersection-over-Union (IoU) is applied to sample the positive and negative candidates for training. However, we observe that the selected positive anchors cannot always ensure accurate detections after regression, while some negative samples can achieve accurate localization. It indicates that the quality assessment of anchors through IoU is not appropriate, and this further lead to inconsistency between classification confidence and localization accuracy. In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carry out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated. With the newly introduced DAL, we achieve superior detection performance for arbitrary-oriented objects with only a few horizontal preset anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA, UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method achieves substantial improvement compared with the baseline model. Besides, our approach is also universal for object detection using horizontal bound box. The code and models are available at https://github.com/ming71/DAL.
In this paper, we propose a general approach to optimize anchor boxes for object detection. Nowadays, anchor boxes are widely adopted in state-of-the-art detection frameworks. However, these frameworks usually pre-define anchor box shapes in heuristic ways and fix the sizes during training. To improve the accuracy and reduce the effort of designing anchor boxes, we propose to dynamically learn the anchor shapes, which allows the anchors to automatically adapt to the data distribution and the network learning capability. The learning approach can be easily implemented with stochastic gradient descent and can be plugged into any anchor box-based detection framework. The extra training cost is almost negligible and it has no impact on the inference time or memory cost. Exhaustive experiments demonstrate that the proposed anchor optimization method consistently achieves significant improvement ($ge 1%$ mAP absolute gain) over the baseline methods on several benchmark datasets including Pascal VOC 07+12, MS COCO and Brainwash. Meanwhile, the robustness is also verified towards different anchor initialization methods and the number of anchor shapes, which greatly simplifies the problem of anchor box design.
Despite the substantial progress of active learning for image recognition, there still lacks an instance-level active learning method specified for object detection. In this paper, we propose Multiple Instance Active Object Detection (MI-AOD), to select the most informative images for detector training by observing instance-level uncertainty. MI-AOD defines an instance uncertainty learning module, which leverages the discrepancy of two adversarial instance classifiers trained on the labeled set to predict instance uncertainty of the unlabeled set. MI-AOD treats unlabeled images as instance bags and feature anchors in images as instances, and estimates the image uncertainty by re-weighting instances in a multiple instance learning (MIL) fashion. Iterative instance uncertainty learning and re-weighting facilitate suppressing noisy instances, toward bridging the gap between instance uncertainty and image-level uncertainty. Experiments validate that MI-AOD sets a solid baseline for instance-level active learning. On commonly used object detection datasets, MI-AOD outperforms state-of-the-art methods with significant margins, particularly when the labeled sets are small. Code is available at https://github.com/yuantn/MI-AOD.
Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbation can completely change prediction result. The vulnerability has led to a surge of research in this direction, including adversarial attacks on object detection networks. However, previous studies are dedicated to attacking anchor-based object detectors. In this paper, we present the first adversarial attack on anchor-free object detectors. It conducts category-wise, instead of previously instance-wise, attacks on object detectors, and leverages high-level semantic information to efficiently generate transferable adversarial examples, which can also be transferred to attack other object detectors, even anchor-based detectors such as Faster R-CNN. Experimental results on two benchmark datasets demonstrate that our proposed method achieves state-of-the-art performance and transferability.
Incremental learning requires a model to continually learn new tasks from streaming data. However, traditional fine-tuning of a well-trained deep neural network on a new task will dramatically degrade performance on the old task -- a problem known as catastrophic forgetting. In this paper, we address this issue in the context of anchor-free object detection, which is a new trend in computer vision as it is simple, fast, and flexible. Simply adapting current incremental learning strategies fails on these anchor-free detectors due to lack of consideration of their specific model structures. To deal with the challenges of incremental learning on anchor-free object detectors, we propose a novel incremental learning paradigm called Selective and Inter-related Distillation (SID). In addition, a novel evaluation metric is proposed to better assess the performance of detectors under incremental learning conditions. By selective distilling at the proper locations and further transferring additional instance relation knowledge, our method demonstrates significant advantages on the benchmark datasets PASCAL VOC and COCO.