Do you want to publish a course? Click here

Reinforcement learning for bandwidth estimation and congestion control in real-time communications

281   0   0.0 ( 0 )
 Added by Martin Ellis
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Bandwidth estimation and congestion control for real-time communications (i.e., audio and video conferencing) remains a difficult problem, despite many years of research. Achieving high quality of experience (QoE) for end users requires continual updates due to changing network architectures and technologies. In this paper, we apply reinforcement learning for the first time to the problem of real-time communications (RTC), where we seek to optimize user-perceived quality. We present initial proof-of-concept results, where we learn an agent to control sending rate in an RTC system, evaluating using both network simulation and real Internet video calls. We discuss the challenges we observed, particularly in designing realistic reward functions that reflect QoE, and in bridging the gap between the training environment and real-world networks.



rate research

Read More

With the increasing demands on interactive video applications, how to adapt video bit rate to avoid network congestion has become critical, since congestion results in self-inflicted delay and packet loss which deteriorate the quality of real-time video service. The existing congestion control is hard to simultaneously achieve low latency, high throughput, good adaptability and fair bandwidth allocation, mainly because of the hardwired control strategy and egocentric convergence objective. To address these issues, we propose an end-to-end statistical learning based congestion control, named Iris. By exploring the underlying principles of self-inflicted delay, we reveal that congestion delay is determined by sending rate, receiving rate and network status, which inspires us to control video bit rate using a statistical-learning congestion control model. The key idea of Iris is to force all flows to converge to the same queue load, and adjust the bit rate by the model. All flows keep a small and fixed number of packets queuing in the network, thus the fair bandwidth allocation and low latency are both achieved. Besides, the adjustment step size of sending rate is updated by online learning, to better adapt to dynamically changing networks. We carried out extensive experiments to evaluate the performance of Iris, with the implementations of transport layer (UDP) and application layer (QUIC) respectively. The testing environment includes emulated network, real-world Internet and commercial LTE networks. Compared against TCP flavors and state-of-the-art protocols, Iris is able to achieve high bandwidth utilization, low latency and good fairness concurrently. Especially over QUIC, Iris is able to increase the video bitrate up to 25%, and PSNR up to 1dB.
A novel intelligent bandwidth allocation scheme in NG-EPON using reinforcement learning is proposed and demonstrated for latency management. We verify the capability of the proposed scheme under both fixed and dynamic traffic loads scenarios to achieve <1ms average latency. The RL agent demonstrates an efficient intelligent mechanism to manage the latency, which provides a promising IBA solution for the next-generation access network.
126 - Songyang Zhang 2020
Recently, much effort has been devoted by researchers from both academia and industry to develop novel congestion control methods. LearningCC is presented in this letter, in which the congestion control problem is solved by reinforce learning approach. Instead of adjusting the congestion window with fixed policy, there are serval options for an endpoint to choose. To predict the best option is a hard task. Each option is mapped as an arm of a bandit machine. The endpoint can learn to determine the optimal choice through trial and error method. Experiments are performed on ns3 platform to verify the effectiveness of LearningCC by comparing with other benchmark algorithms. Results indicate it can achieve lower transmission delay than loss based algorithms. Especially, we found LearningCC makes significant improvement in link suffering from random loss.
Multicasting in wireless systems is a natural way to exploit the redundancy in user requests in a Content Centric Network. Power control and optimal scheduling can significantly improve the wireless multicast networks performance under fading. However, the model based approaches for power control and scheduling studied earlier are not scalable to large state space or changing system dynamics. In this paper, we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network to obtain a power control policy that matches the optimal policy for a small network. We show that power control policy can be learnt for reasonably large systems via this approach. Further we use multi-timescale stochastic optimization to maintain the average power constraint. We demonstrate that a slight modification of the learning algorithm allows tracking of time varying system statistics. Finally, we extend the multi-timescale approach to simultaneously learn the optimal queueing strategy along with power control. We demonstrate scalability, tracking and cross layer optimization capabilities of our algorithms via simulations. The proposed multi-timescale approach can be used in general large state space dynamical systems with multiple objectives and constraints, and may be of independent interest.
We consider a multicast scheme recently proposed for a wireless downlink in [1]. It was shown earlier that power control can significantly improve its performance. However for this system, obtaining optimal power control is intractable because of a very large state space. Therefore in this paper we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network. We show that optimal power control can be learnt for reasonably large systems via this approach. The average power constraint is ensured via a Lagrange multiplier, which is also learnt. Finally, we demonstrate that a slight modification of the learning algorithm allows the optimal control to track the time varying system statistics.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا